- Title:
- Strategies for managing models regarding environmental confidence and complexity involved in intelligent control of energy systems - A review
- Author:
Adel Razek
- Author Affiliation:
Group of Electrical Engineering – Paris (GeePs), CNRS, University of Paris-Saclay and Sorbonne University, Gif sur Yvette, France
- Received:Mar.14, 2023
- Accepted:Apr.12, 2023
- Published:Apr.26, 2023
Energy systems, smart control, dynamics; complexity, confidence, coupled models, online matching, model reduction.
[1] Perrow, C. Normal Accidents: Living with High Risk Technologies - Updated Edition. Princeton University Press, New Jersey, United States. 2011 doi: 10.2307/j.ctt7srgf
[2] Yang, H.; Fujii, Y.; Zhang, Y.; Haria, H. et al. Uncertainty Quantification of Wet Clutch Actuator Behaviors in P2 Hybrid Engine Start Process. SAE Technical Paper 2022, 01, 0652. https://doi.org/10.4271/2022-01-0652
[3] Memon, Z.A.; Trinchero, R.; Manfredi, P.; Canavero, F.; Stievano, I.S. Compressed Machine Learning Models for the Uncertainty Quantification of Power Distribution Networks. Energies 2020, 13, 4881. https://doi.org/10.3390/en13184881
[4] Taha, A. F.; Gatsis, N.; Summers, T.; Nugroho, S. A. Time-Varying Sensor and Actuator Selection for Uncertain Cyber-Physical Systems. IEEE Transactions on Control of Network Systems 2019, 6(2), 750-762.doi: 10.1109/TCNS.2018.2873229.
[5] Granig, W.; Faller, LM.; Zangl, H. Sensor System Optimization to meet Reliability Targets. Microelectronics Reliability 2018, 87, 113-124. DOI: 10.1016/j.microrel.2018.06.00
[6] Luo, Q.; Peng, Y.; Peng, X.; Saddik, A.E. Uncertain Data Clustering-Based Distance Estimation in Wireless Sensor Networks. Sensors 2014, 14, 6584-6605. https://doi.org/10.3390/s140406584
[7] Tzagkarakis, G.; Seliniotaki, A.; Christophides, V.; Tsakalides, P. Uncertainty-Aware Sensor Data Management and Early Warning for Monitoring Industrial Infrastructures. Int. J. Monit. Surveillance Technol. Res. 2014, 2 (4), 1–24. http:// DOI: 10.4018/IJMSTR.2014100101
[8] Xavier, M.; Tawk, C.; Zolfagharian, A.; Pinskier, J.; Howard, G.; Young, T.; Lai, J.; Harrison, S.; Yong, Y. K.; Bodaghi, M.; Fleming, A. Soft Pneumatic Actuators: A Review of Design, Fabrication, Modeling, Sensing, Control and Applications. IEEE Access 2022, 1-1. 10.1109/ACCESS.2022.3179589.
[9] Xu, D.; Wang, B.; Zhang, G.; Wang, G.; Yu, Y. A review of sensorless control methods for AC motor drives. CES Transactions on Electrical Machines and Systems 2020, 2(1), 104–115. doi:10.23919/tems.2018.8326456.
[10] Soto, G. G.; Mendes, E.; Razek, A. Reduced-order observers for rotor flux, rotor resistance and speed estimation for vector-controlled induction motor drives using the extended Kalman filter technique. IEE Proceedings-Electric Power Applications 1999, 146(3), 282-288. doi:10.1049/ip-epa:19990293.
[11] Alonge, F.; D’Ippolito, F.; Sferlazza, A. Sensorless control of induction-motor drive based on robust kalman filter and adaptive speed estimation. IEEE Trans on Ind. Elec. 2014, 61(3), 1444–1453. doi:10.1109/TIE.2013.2257142.
[12] El Moucary, C.; Mendes, E.; Razek, A. Decoupled direct control for PWM inverter-fed induction motor drives. IEEE transactions on industry applications 2002, 38(5), 1307-1315. doi:10.1109/TIA.2002.803010.
[13] Holtz, J.; Quan, J. Drift- and parameter-compensated flux estimator for persistent zero-stator-frequency operation of sensorless-controlled induction motors. IEEE Transactions on Industry Applications 2003, 39(4), 1052–1060. doi:10.1109/tia.2003.813726.
[14] Ortega, R.; Aranovskiy, S.; Pyrkin, A. A.; Astolfi, A.; Bobtsov, A. A. New Results on Parameter Estimation via Dynamic Regressor Extension and Mixing: Continuous and Discrete-Time Cases. IEEE Transactions on Automatic Control 2021, 66(5), 2265–2272. doi:10.1109/TAC.2020.3003651.
[15] Mendes, E.; Baba, A.; Razek, A. Losses minimization of a field oriented controlled induction machine. IEEE Conference Publication 1995, 412, 310–314). doi:10.1049/cp:19950885.
[16] Razek, A. Towards an image-guided restricted drug release in friendly implanted therapeutics. EPJ Applied Physics 2018, 82(3), 31401. doi:10.1051/epjap/2018180201
[17] Guo, Z.; Yan, S.; Xu, X.; Chen, Z.; Ren, Z. Twin-Model Based on Model Order Reduction for Rotating Motors. IEEE Transactions on Magnetics 2022, 58(9), 1-4, 8206304.doi: 10.1109/TMAG.2022.3187620.
[18] Besselink, B.; Tabak,; Lutowska, A.; van de Wouw, N.; Nijmeijer, H.; Rixen, D.J.; Hochstenbach, M.E.;. Schilders, W.H.A A comparison of model reduction techniques from structural dynamics, numerical mathematics and systems and control.Journal of Sound and Vibration 2013, 332(19), 4403-4422. https://doi.org/10.1016/j.jsv.2013.03.025.
[19] Tol, H.J.; de Visser, C.C.; Kotsonis, M. Model reduction of parabolic PDEs using multivariate splines. International Journal of Control 2019, 92 (1) 175-190. https://doi.org/10.1080/00207179.2016.1222554
[20] Nunes, A. S.; Dular, P.; Chadebec, O.; Kuo-Peng, P. Subproblems Applied to a 3-D Magnetostatic Facet FEM Formulation. IEEE Transactions on Magnetics 2018, 54(8), 1-9, 7402209. doi:10.1109/TMAG.2018.2828786..
[21] Benner, P.; Ohlberger, M.; Cohen, A.; Wilcox, K. Model Reduction and Approximation: Theory and Algorithms. Published by SIAM-Society for Industrial & App. Math. 2017. https://doi.org/10.1137/1.9781611974829
[22] Tolk, A. Simulation-Based Optimization: Implications of Complex Adaptive Systems and Deep Uncertainty. Information 2022, 13, 469. https://doi.org/10.3390/info13100469
[23] Wen, J.; Gabrys, B.; Musial, K. Towards Digital Twin Oriented Modeling of Complex Networked Systems and Their Dynamics: A Comprehensive Survey. arXiv 2022, arXiv:2202.09363. https://doi.org/10.48550/arXiv.2202.09363
[24] Oliveira Monteiro, L. M.; Saraiva, J. P.; Brizola Toscan, R.; Stadler, P. F.; Silva-Rocha, R.; Nunes da Rocha, U. PredicTF: prediction of bacterial transcription factors in complex microbial communities using deep learning. Env. microbiome 2022, 17(1), 7. https://doi.org/10.1186/s40793-021-00394-x
[25] Helbing, D.; S'anchez-Vaquerizo, J.A. Digital Twins: Potentials, Ethical Issues, and Limitations. SSRN Electronic Journal 2022, arXiv:2208.04289. https://doi.org/10.48550/arXiv.2208.04289
[26] Polasky, S. et al. Corridors of Clarity: Four Principles to Overcome Uncertainty Paralysis in the Anthropocene. Bioscience 2020, 70(12), 1139–1144. https://doi.org/10.1093/biosci/biaa115
[27] Pelz, P.F. et al. Types of Uncertainty. In: Pelz, P.F., Groche, P., Pfetsch, M.E., Schaeffner, M. (eds) Mastering Uncertainty in Mechanical Engineering. Springer Tracts in Mechanical Engineering 2021. Springer, Cham. https://doi.org/10.1007/978-3-030-78354-9_2
[28] Hüllermeier, E.; Waegeman, W. Aleatoric and epistemic uncertainty in machine learning: an introduction to concepts and methods. Mach Learn 110 2021, 457–506. https://doi.org/10.1007/s10994-021-05946-3
[29] Razek, A. Coupled Models in Electromagnetic and Energy Conversion Systems from Smart Theories Paradigm to That of Complex Events: A Review. Appl. Sci. 2022, 12, 4675. https://doi.org/10.3390/app12094675
[30] Craig Jr., R.R.; Bampton, M.C.C. Coupling of substructures for dynamic analyses. AIAA Journal 1968, 6 (7), 1313–1319. https://doi.org/10.2514/3.4741
[31] Géradin, M.; Rixen, D. Mechanical Vibrations: Theory and Application to Structural Dynamics, ISBN: 978-1-118-90020-8, 2nd ed., John Wiley & Sons, 1997.
[32] Enns, D.F. Model reduction with balanced realizations: an error bound and a frequency weighted generalization. Proceedings of the 23rd IEEE Conference on Decision and Control, Las Vegas, USA, 1984, 127–132. doi:10.1109/CDC.1984.272286.
[33] Glover, K. All optimal Hankel-norm approximations of linear multivariable systems and their L ∞ - error bounds. International Journal of Control 1984, 39(6), 1115 – 1193. https://doi.org/10.1080/00207178408933239
[34] Moore, B.C. Principal component analysis in linear systems—controllability, observability, and model reduction, IEEE Transactions on Automatic Control 1981, AC-26 (1), 17–32. doi: 10.1109/TAC.1981.1102568
[35] Imran, M.; Imran M.; Ahmad, M. I. Development of Frequency Weighted Model Order Reduction Techniques for Discrete-Time One-Dimensional and Two-Dimensional Linear Systems with Error Bounds. IEEE Access 2022, 10, 15096-15117. doi: 10.1109/ACCESS.2022.3146394.
[36] Sarkar, A; Scherpen, J. M. A. Extended Differential Balancing for Nonlinear Dynamical Systems. IEEE Control Systems Letters 2022, 6, 3170-3175. doi: 10.1109/LCSYS.2022.3183528.
[37] Gao, Y.; Liu, J.; Li, M.; Tian, Z.; Li, C. Design of Asynchronous Motor Controller Based on Controlled Lagrangians Method. Mathematical Problems in Engineering 2022, 4275946. https://doi.org/10.1155/2022/4275946
[38] Borja, P.; Scherpen, J. M. A; Fujimoto, K. Extended Balancing of Continuous LTI Systems: A Structure-Preserving Approach. IEEE Transactions on Automatic Control 2023, 68(1), 257-271. doi: 10.1109/TAC.2021.3138645.
[39] Feldmann, P.; Freund, R.W. Efficient linear circuit analysis by Padé approximation via the Lanczos process. IEEE Trans on Comp-Aided Design of Integrated Circuits and Systems 1995, 14 (5), 639–649.doi: 10.1109/43.384428.
[40] Gugercin, S.; Antoulas, A.C. A survey of model reduction by balanced truncation and some new results. International Journal of Control 2004, 77 (8), 748–766. DOI: 10.1080/00207170410001713448
[41] Pillage, L.T; Rohrer, R.A. Asymptotic waveform evaluation for timing analysis. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 1990, 9 (4) 352–366. doi: 10.1109/43.45867.
[42] Alfke, D; Feng, L; Lombardi, L; Antonini, G; Benner, P. Model order reduction for delay systems by iterative interpolation. Int J Numer Methods Eng. 2021; 122, 684– 706. https://doi.org/10.1002/nme.6554
[43] Grieves, M.; Vickers, J. Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems. In: Kahlen, J., Flumerfelt, S., Alves, A. (eds) Transdisciplinary Perspectives on Complex Systems 2017, 85-113. Springer, Cham. https://doi.org/10.1007/978-3-319-38756-7_4
[44] Tao, F.; Sui, F.; Liu, A.; Qi, Q.; Zhang, M.; Song, B.; Guo, Z.; Lu, S. C. Y.; Nee, A.Y.C. Digital twin-driven product design framework. Int. Jour. of Prod. Research 2019, 57(12),3935–3953. doi:10.1080/00207543.2018.1443229.
[45] He, B.; Bai, K. J. Digital twin-based sustainable intelligent manufacturing: A review. Advances in Manufac. 2021, 9(1), 1-21. doi:10.1007/s40436-020-00302-5.55
[46] Cai, Y.et al Sensor Data and Information Fusion to Construct Digital-twins Virtual Machine Tools for Cyber-physical Manufacturing. Procedia Manufacturing 2017, 10, 1031–1042.doi:10.1016/j.promfg.2017.07.094.
[47] Selçuk, Ş.Y.; Ünal, P.; Albayrak, Ö.; Jomâa, M. A Workflow for Synthetic Data Generation and Predictive Maintenance for Vibration Data. Information 2021, 12, 386. https://doi.org/10.3390/info12100386
[48] Montero Jimenez, J. J. et al. Towards multi-model approaches to predictive maintenance: A systematic literature survey on diagnostics and prognostics. Jour of Manuf Sys 2020, 56, 539–557. https://doi.org/10.1016/j.jmsy.2020.07.008.
[49] Nacchia, M.; Fruggiero, F.; Lambiase, A.; Bruton, K. A Systematic Mapping of the Advancing Use of Machine Learning Techniques for Predictive Maintenance in the Manufacturing Sector. Appl. Sci. 2021, 11, 2546. https://doi.org/10.3390/app11062546
[50] Liu, Z.; Meyendorf, N.; Mrad, N. The role of data fusion in predictive maintenance using digital twin. AIP Conference Proceedings 2018, 1949, 020023. https://doi.org/10.1063/1.5031520
[51] Liu, Y.et al. A Novel Cloud-Based Framework for the Elderly Healthcare Services Using Digital Twin. IEEE Access 2019, 7, 49088–49101.doi:10.1109/ACCESS.2019.2909828.
[52] Kamel Boulos, M. N.; Zhang, P. Digital twins: From personalised medicine to precision public health. Journal of Personalized Medicine 2021, 11(8), 745. doi:10.3390/jpm11080745.
[53] Holmes, D., et al. Digital Twins and Cyber Security – solution or challenge? Comp Eng, Computer Networks and Social Media Conference (SEEDA-CECNSM, 1–8) 2021.doi:10.1109/seeda-cecnsm53056.2021.9566277.
[54] Gehrmann, C.; Gunnarsson, M. A digital twin based industrial automation and control system security architecture. IEEE Transactions on Industrial Informatics 2020, 16(1), 669–680. doi:10.1109/TII.2019.2938885.
[55] Boschert, S.; Rosen, R. Digital Twin—the Simulation Aspect. In: Hehenberger, P., Bradley, D. (eds) Mechatronic Futures 2016. Springer, Cham. https://doi.org/10.1007/978-3-319-32156-1_5
[56] Shirowzhan, S.et al. Digital twin and Cyber GIS for improving connectivity and measuring the impact of infrastructure construction planning in smart cities. ISPRS Int Jour of Geo-Inf 2020, 9(4), 240,. doi:10.3390/ijgi904024014
[57] Bhatti, G.; Mohan, H.; Raja Singh, R. Towards the future of smart electric vehicles: Digital twin technology. Renewable and Sustainable Energy Reviews 2021,141,110801. doi:10.1016/j.rser.2021.110801.
[58] Chen, X.; Min, X.; Li, N.; Cao, W.; Xiao, S.; Du, G.; Zhang, P. Dynamic safety measurementcontrol technology for intelligent connected vehicles based on digital twin system. Vibro engineering Procedia 2021, 37, 78–85. doi:10.21595/vp.2021.21990
[59] Liu, S.; Wang, X.V.; Wang, L. Digital twin-enabled advance execution for human-robot collaborative assembly. CIRP Annals 2022, 71(1), 25-28, ISSN 0007-8506, https://doi.org/10.1016/j.cirp.2022.03.024.
[60] Razek, A. Review of Pairing Exercises Involving a Real Event and its Virtual Model up to the Supervision of Complex Procedures. Journal of Human, Earth, and Future 2021, 2 (4), Doi: 10.28991/HEF-2021-02-04-010
[61] Nie, X.; Min, C.; Pan, Y.; Li, K.; Li, Z. Deep-Neural-Network-Based Modelling of Longitudinal-Lateral Dynamics to Predict the Vehicle States for Autono. Driving. Sensors 2022, 22, 2013. https://doi.org/10.3390/s22052013
[62] Farroni, F.; Sakhnevych, A. multiphysical modeling for the analysis of thermal and wear sensitivity on vehicle objective dynamics and racing performances. Simulation Modelling Practice and Theory 2022, 117,102517. https://doi.org/10.1016/j.simpat.2022.102517.
[63] Mosconi, L.; Farroni, F; Sakhnevych, A.; Timpone, F.; Gerbino, F. Adaptive vehicle dynamics state estimator for onboard automotive applications and performance analysis, Vehicle System Dynamics 2022, DOI: 10.1080/00423114.2022.2158567
[64] Hulagu, S.; Celikoglu, H. B. An Electric Vehicle Routing Problem With Intermediate Nodes for Shuttle Fleets. IEEE Trans on Intelligent Transportation Systems 2022, 23(2), 1223-1235.doi: 10.1109/TITS.2020.3023673.
[65] Bellocchi, S.; Klöckner, K.; Manno, M.; Noussan, M.; Vellini, M. On the role of electric vehicles towards low-carbon energy systems: Italy and Germany in comparison, Applied Energy 2019, 255, 0306-2619, https://doi.org/10.1016/j.apenergy.2019.113848.
[66] Qiu, D.; Wang, Y.; Zhang, T.; Sun, M.; Strbac, G. Hybrid Multiagent Reinforcement Learning for Electric Vehicle Resilience Control Towards a Low-Carbon Transition. IEEE Transactions on Industrial Informatics 2022, 18(11), 8258-8269.doi: 10.1109/TII.2022.3166215.
[67] Shaukat, N.S; Ali, M; Mehmood, C.A; Khan, B.; Jawad, M.; Farid, U.; Ullah, Z.; Anwar, S.M.; Majid, M. A survey on consumers empowerment, communication technologies, and renewable generation penetration within Smart Grid. Renewable and Sustainable Energy Reviews 2018, 81(1), 1453-1475. https://doi.org/10.1016/j.rser.2017.05.208.
[68] Yang, Z.; Li, K.; Foley, A. Computational scheduling methods for integrating plug-in electric vehicles with power systems: A review. Renewable and Sustainable Energy Reviews 2015, 51, 396-416 .https://doi.org/10.1016/j.rser.2015.06.007.
[69] Venegas, F.G.; Petit, M.; Perez, Y. Active integration of electric vehicles into distribution grids: Barriers and frameworks for flexibility services. Renewable and Sustainable Energy Reviews 2021, 145, 11060. https://doi.org/10.1016/j.rser.2021.111060.
[70] Yan, L.; Chen, X.; Chen, Y.; Wen, J. A Cooperative Charging Control Strategy for Electric Vehicles Based on Multiagent Deep Reinforcement Learning. IEEE Transactions on Industrial Informatics 2022, 18(12), 8765-8775. doi: 10.1109/TII.2022.3152218.
[71] Sadeghianpourhamami, N; Deleu, J; Develder, C. Definition and Evaluation of Model-Free Coordination of Electrical Vehicle Charging with Reinforcement Learning. IEEE Transactions on Smart Grid 2020, 11(1), 203-214.doi: 10.1109/TSG.2019.2920320.
[72] Jin, J.; Xu, Y. Optimal Policy Characterization Enhanced Actor-Critic Approach for Electric Vehicle Charging Scheduling in a Power Distribution Network. IEEE Transactions on Smart Grid 2021, 12(2), 1416-1428.doi: 10.1109/TSG.2020.3028470.
[73] Zhang, F.; Yang, Q.; An, D. CDDPG: A Deep-Reinforcement-Learning-Based Approach for Electric Vehicle Charging Control. IEEE Internet of Things Journal 2021, 8(5), 3075-3087. doi: 10.1109/JIOT.2020.3015204.
[74] Wang, R.; Chen, Z.; Xing, Q.; Zhang, Z.; Zhang, T. A Modified Rainbow-Based Deep Reinforcement Learning Method for Optimal Scheduling of Charging Station. Sustainability 2022, 14, 1884. https://doi.org/10.3390/su1403188415
[75] Wang, S.; Bi, S.; Zhang, Y. A. Reinforcement Learning for Real-Time Pricing and Scheduling Control in EV Charging Stations. IEEE Transactions on Industrial Informatics 2021, 17(2), 849-859. doi: 10.1109/TII.2019.2950809.
[76] Zhao, Z.; Lee, C. K. M. Dynamic Pricing for EV Charging Stations: A Deep Reinforcement Learning Approach. IEEE Transactions on Transportation Electrification 2022, 8(2), 2456-2468. doi: 10.1109/TTE.2021.3139674.
[77] Xu, P.; Zhang, J.; Gao, T.; Chen, S.; Wang, X.; Jiang, H. et al. Real-time fast charging station recommendation for electric vehicles in coupled power-transportation networks: A graph reinforcement learning method. International Journal of Electrical Power & Energy Systems 2022, 141,108030. https://doi.org/10.1016/j.ijepes.2022.108030.
[78] Qiu, D.; Wang, Y.; Hua, W.; Strbac, G. Reinforcement learning for electric vehicle applications in power systems: A critical review, Renewable and Sustainable Energy Reviews 2023, 173, 113052. https://doi.org/10.1016/j.rser.2022.113052.
[79] Dorokhova, M.; Martinson, Y.; Ballif, C.; Wyrsch, N. Deep reinforcement learning control of electric vehicle charging in the presence of photovoltaic generation. Applied Energy 2021, 301, 117504.https://doi.org/10.1016/j.apenergy.2021.117504.
[80] Yang, A.; Sun, H.; Zhang, X. Deep Reinforcement Learning Strategy for Electric Vehicle Charging Considering Wind Power Fluctuation. Journal of Engineering Science and Technology Review 2021, 14. 103-110. 10.25103/jestr.143.12.
[81] Sarigiannidis, A. G.; Beniakar, M. E.; Kladas, A. G. Fast Adaptive Evolutionary PM Traction Motor Optimization Based on Electric Vehicle Drive Cycle. IEEE Transactions on Vehicular Technology 2017, 66(7), 5762-5774. doi: 10.1109/TVT.2016.2631161.
[82] Naseri, F.; Schaltz, E.; Lu, K.; Farjah, E. Real-time open-switch fault diagnosis in automotive permanent magnet synchronous motor drives based on Kalman filter. IET Power Electronics 2020, 13, 2450-2460. https://doi.org/10.1049/iet-pel.2019.1498
[83] Razek, A. Review of Contactless Energy Transfer Concept Applied to Inductive Power Transfer Systems in Electric Vehicles. Appl. Sci. 2021, 11, 3221. https://doi.org/10.3390/app11073221
[84] Ibrahim, M.; Bernard, L.; Pichon, L.; Razek, A.; Houivet, J.; Cayol, O. Advanced modeling of a 2-kw series–series resonating inductive charger for real electric vehicle. IEEE Trans. Veh. Technol. 2015, 64, 421–430. doi: 10.1109/TVT.2014.2325614.
[85] Cirimele, V.; Torchio, R.; Villa, J.L.; Freschi, F.; Alotto, P.; Codecasa, L.; Di Rienzo, L. Uncertainty Quantification for SAE J2954 Compliant Static Wireless Charge Components. IEEE Access 2020, 8, 171489–171501. DOI:10.1109/ACCESS.2020.3025052
[86] Cirimele, V.; Diana, M.; Bellotti, F.; Berta, R.; El Sayed, N.; Kobeissi, A.; Guglielmi, P.; Ruffo, R.; Khalilian, M.; La Ganga, A.; et al. The Fabric ICT Platform for Managing Wireless Dynamic Charging Road Lanes. IEEE Trans. Veh. Technol. 2020, 69, 2501–2512. doi: 10.1109/TVT.2020.2968211.
[87] Zhang, B; Wang, X; Lu, C; Lu, Y; Xu, W. A wireless power transfer system for an autonomous underwater vehicle based on lightweight universal variable ring-shaped magnetic coupling. Int J Circ Theor Appl. 2023, 1, 20. doi:10.1002/cta.3568
[88] Ding, P.; Bernard, L.; Pichon, L.; Razek, A. Evaluation of Electromagnetic Fields in Human Body Exposed to Wireless Inductive Charging System. IEEE Trans. Magn. 2014, 50, 1037–1040. doi: 10.1109/TMAG.2013.2284245.
[89] Asa, E; Mohammad, M.; Onar, O. C.; Pries, J.; Galigekere, V.; Su, G. -J. Review of Safety and Exposure Limits of Electromagnetic Fields (EMF) in Wireless Electric Vehicle Charging (WEVC) Applications. 2020 IEEE Transportation Electrification Conference & Expo (ITEC), Chicago, IL, USA, 2020, 17-24, doi: 10.1109/ITEC48692.2020.9161597.