Volume 2, Issue 1, No.5 PDF DOWNLOAD
  • Title:
  • Influence of the temperature and the concentration of methanol on a direct methanol fuel cell
  • Author:

    Mihoub Medkour, Toufik bensana

  • Author Affiliation:

    Laboratoire des Aéronefs, Université SAAD DAHLAB de Blida 1, Blida, Algeria.

  • Received:Mar.3, 2023
  • Accepted:May.15, 2023
  • Published:May.23, 2023
Abstract
A one-dimensional mathematical model, which permits semi-empirical prediction of the overall performance of a direct methanol gas telephone (DMFC) has exceptional temperatures for a proton change membrane by using the usage of parameters acquired from the classical characterization techniques is presented. The strategies conventionally used are characterised as follows: the impedance spectroscopy (proton conductivity), water absorption (water absorption), the perevaporation (methanol permeability and water) and gasoline permeation experiments (permeability to oxygen, nitrogen and carbon dioxide). This mannequin was once validated experimentally the use of the outcomes got with membranes Poly (vinylidene fl uoride-hexa fluorine opropylene) (PVdF-HFP) / Nafion ionomer / aluminum oxy hydroxide organized through segment inversion method [1]. The mannequin precisely anticipated the polarization curves and DMFC overall performance in phrases of open circuit voltage and the cutting-edge density, the attention of methanol and water in accordance to the residences of the membrane effectively. This information affirm that the simulator can effectively predict the DMFC performance, the usage of the basic characterization statistics as mannequin enters parameters. 
Keywords

Passive direct methanol fuel cell, modeling, methanol crossover, water crossover.

References

[1] S. Hietala, K. Koel, E. Skou, M. Elomaa and F. Sundholm, Thermal stability of styrene grafted and sulfonated proton conducting membranes based on poly (vinylidene fluoride), J. Mater. Chem. 8(1998) 1127. DOI:10.1039/A708288F

[2] Q. Ye, T.S. Zhao, A natural-circulation fuel delivery system for direct methanol fuel cells, Journal of Power Sources, 147 (2005) 196-202. DOI:10.1016/j.jpowsour.2005.01.026

[3] Y.H. Pan, Advanced air-breathing direct methanol fuel cells for portable applications, Journal of Power Sources 161 (2006) 282–289. DOI:10.1016/j.jpowsour.2006.03.048

[4] V. B.Oliveira, D. S. Falcao, C. M. Rangel and A. M. F.R. Pinto, “A comparative study of approaches to direct methanol fuel cells modeling,” International Journal of Hydrogen Energy, vol. 32, pp. 415-424, 2007. DOI:10.1016/j.ijhydene.2006.06.049

[5] Y. Chiu, T. L. Yu and Y. Chung, “A semi-empirical model for efficiency evaluation of a direct methanol fuel cell”, Journal of Power Sources, 2011. DOI:10.1016/j.jpowsour.2011.01.084

[6] J. G. Liu, T. S. Zhao, Z. X. Liang, R. Chen, Effect of membrane thickness on the performance and efficiency of passive direct methanol fuel cells, Journal of Power Sources 153 (2006) 61–67. DOI:10.1016/j.jpowsour.2005.03.190

[7] B.K. Kho, B. Bae, M. A. Scibioh, J. Lee, H.Y. Ha, On the consequences of methanol Crossover in passive air-breathing direct methanol fuel cells, Journal of Power Sources, 142 (2005) 50-55. DOI:10.1016/j.jpowsour.2004.10.027

[8] T.S. Zhao, R. Chen, W.W. Yang, C. Xu, Small direct methanol fuel cells with passive supply of reactants, Journal of Power Sources 191 (2009) 185–202. DOI:10.1016/j.jpowsour.2009.02.033

[9] B.L. García, V.A. Sethuraman, J.W. Weidner, R.E. White, Mathematical Model of a Direct Methanol Fuel Cell, Journal of Fuel Cell Science and Technology, Vol.1 November 2004 43-48. DOI:10.1115/1.1782927

[10] S. H. Seo and C. S. Lee, “A study on the overall efficiency of direct methanol fuel cell by methanol crossover current,” Applied Energy, vol. 87, pp. 2597-2604, 2010. DOI:10.1016/j.apenergy.2010.01.018

[11] Thorsten Schultz, Experimental and Model-based Analysis of the Steady-state and Dynamic Operating Behaviour of the Direct Methanol Fuel Cell (DMFC), PhD

[12] R.C.Reid, J.M. Prausnitz, T.K. Sherwood, The Properties of Gases and Liquids,McGraw-Hill, 1977.

[13] V.B.Oliveira, D.S.Falcão, C.M. Rangel and A.M.F.R. Pinto, Modelling and experimentalstudies on a Direct Methanol Fuel Cell working under low methanol crossover and high methanol concentrations, International Journal of Hydrogen Energy, 34, 6443-6451. DOI:10.1016/j.ijhydene.2009.05.114

[14] K.Broka and P.Ekdunge, Oxygen and hydrogen permeation properties and water Uptake of Nafion 117 membrane and recast film for PEM fuel cell, Journal of Applied Electrochemistry 27 (1997) 281-289. DOI :10.1023/A:1018469520562

[15] K. Lee, J.H. Nam, J.H. Lee, Y. Lee, S.M. Cho, C.H. Jung, H.G. Choi, Y.Y. Chang, Y.U. Kwon and J.D. Nam, Methanol and proton transport control by using layered double hydroxide nanoplatelets for direct methanol fuel cell, Electrochemistry Communications, 7 (2005) 113–118. DOI:10.1016/j.elecom.2004.11.011

[16] M. A. Delavar, M. Farhadi and K. Sedighi, “Numerical simulation of direct methanol fuel cells using lattice Boltzmann method,” International Journal of Hydrogen Energy, vol. 35, pp. 9306-9317, 2010. DOI:10.1016/j.ijhydene.2010.02.126

[17] P. Argyropoulos, K. Scott and W.M. Taama, Gas evolution and power performance in direct methanol fuel cells, Journal of Applied Electrochemistry 29(1999) 661-669. DOI:10.1023/A:1003589319211

[18] P. Argyropoulos, K. Scott and W.M. Taama, Carbon dioxide evolution patterns in direct methanol fuel cells, Electrochimica Acta 29 (1999) 661-669. DOI:10.1016/S0013-4686(99)00102-4

[19] J. Ko, P. Chippar and H. Ju, “A one-dimensional, two-phase model for direct methanol fuel cells - Part I: Model development and parametric study,” Energy, pp. 2149-2159, 2010. DOI:10.1016/j.energy.2010.01.034

[20] Y. Wang, G. Au, E. J. Plichta, and J. P. Zheng, “A semi-empirical method for electrically modeling of fuel cell: Executed on a direct methanol fuel cell,” Journal of Power Sources, vol. 175, pp. 851-860, 2008. DOI:10.1016/j.jpowsour.2007.09.101

[21] J. Zou, Y. He, Z. Miao and X. Li, “Non-isothermal modeling of direct methanol fuel cell,” International Journal of Hydrogen Energy, vol. 35, pp. 7206-7216, 2010. DOI:10.1016/j.ijhydene.2010.01.123

[22] Y. Chiu, “An algebraic semi-empirical model for evaluating fuel crossover fluxes of a DMFC under various operating conditions,” International Journal of Hydrogen Energy, vol. 35, pp. 6418-6430, 2010. DOI:10.1016/j.ijhydene.2010.03.080

[23] S. Basri and S. K. Kamarudin, “Process system engineering in direct methanol fuel cell,” International Journal of Hydrogen Energy, pp. 1-18, 2011. DOI:10.1016/j.ijhydene.2011.02.058

[24] B. Xiao and A. Faghri, “Numerical analysis for a vapor feed miniature direct methanol fuel cell system,” International Journal of Heat and Mass Transfer, vol. 52, pp. 3525-3533, 2009. DOI:10.1016/j.ijheatmasstransfer.2009.03.009

[25] M. Vera, “A single-phase model for liquid-feed DMFCs with non - Tafel kinetics,” Journal of Power Sources, vol. 171, issue. 2, pp 763-777, 2007. DOI:10.1016/j.jpowsour.2007.05.098

[26] M.A. Abdelkareem, N. Nakagawa, DMFC employing a porous plate for an efficient operation at high methanol concentrations, Journal of Power Sources 162 (2006)114–123. DOI:10.1016/j.jpowsour.2006.07.012

[27] R. Chen, T.S. Zhao, J. G. Liu, Effect of cell orientation on the performance of passive direct methanol fuel cells, Journal of Power Sources 157 (2006) 351–357. DOI:10.1016/j.jpowsour.2005.07.073

[28] Y.H. Chan, T.S. Zhao, R. Chen, C. Xu, A self-regulated passive fuel-feed system for passive direct methanol fuel cells, Journal of Power Sources 176 (2008) 183–190. DOI:10.1016/j.jpowsour.2007.10.050

[29] B. Xiao, A. Faghri, Transient modelling and analysis of a passive liquid-feed DMFC, International Journal of Heat and Mass Transfer 51 (2008) 3127-3143. DOI:10.1016/j.ijheatmasstransfer.2007.08.022

[30] J. Liu, T.S. Zhao, R. Chen, C.W.Wong, Effect of methanol concentration on passive DMFC performance, Fuel Cells Bulletin (2005) 12–17. DOI:10.1016/S1464-2859(05)00521-3

[31] G. Jewett, A. Faghri, B. Xiao, Optimization of water and air management systems for a Passive direct methanol fuel cell, International Journal of Heat and Mass Transfer 52 (2009) 3564-3575. DOI:10.1016/j.ijheatmasstransfer.2009.03.006

[32] B. Xiao, H. Bahrami and A. Faghri, “Analysis of heat and mass transport in a miniature Passive and semi passive liquid-feed direct methanol fuel cell,” Journal of Power Sources, vol. 195, pp. 2248-2259, 2010. DOI:10.1016/j.jpowsour.2009.10.047

Copyright 2018 - 2023 Sanderman Publishing House