- Title:
- Progress in the Research of Skull Repair Materials
- Author:
Jinan Wu1, Mei-li Qi1,2*, Kunshan Yuan2, Jinping Ren2, Haijun Zhang3
- Author Affiliation:
1.Shandong Jiaotong University, Ji’nan, China
2.National United Engineering Laboratory for Biomedical Material Modification, Dezhou, China
3.Medical College of Tongji University, Shanghai, China
- Received:Feb.17, 2023
- Accepted:Mar.2, 2023
- Published:Mar.20, 2023
Skull repair, skull defect, growth factor, bone induced frame.
[1] Honeybul S. Complications of decompressive craniectomy for head injury [J]. J Clin Neurosci, 2010, 17(4): 430-435.Https://doi.org/10.1016/j.jocn.2009.09.007.
[2] Rocque BG, Agee BS, Thompson EM, et al. Complications following pediatric cranioplasty after decompressive craniectomy: a multicenter retrospective study[J]. J Neurosurg Pediatr, 2018, 22(3): 225-232. Https://doi.org/10.3171/2018.3.PEDS17234.
[3] Khader B A, Towler M R. Materials and techniques used in cranioplasty fixation: A review [J]. Mater. Sci. Eng. C, 2016, 66 315-322. Https://doi.org/10.1016/j.msec.2016.04.101.
[4] Lai W, Zhang X and Zhao Z. Research progress of adipose stem cells in skull defect repair [J]. Journal of Baotou Medical College, 2021, 37(08): 84-88+132. Https://doi.org/10.1016/j.msec.2016.04.101.
[5] Zheng J, Zhao Z, Yang Y , et al. Biphasic mineralized collagen based composite scaffold for cranial bone regeneration in developing sheep [J]. Regenerative Biomaterials, 2022, 9: rbac004. Https://doi.org/10.1093/rb/rbac004.
[6] Sheng H, Shen F, Zhang N, et al. Titanium mesh cranioplasty in pediatric patients after decompressive craniectomy: Appropriate timing for pre-schoolers and early school age children [J]. Journal of Cranio-Maxillofacial Surgery, 2019, 47(7): 1096-1103. Https://doi.org/10.1016/j.jcms.2019.04.009.
[7] Feroze A H , Walmsley G G , Choudhri O , et al. Evolution of cranioplasty techniques in neurosurgery: historical review, pediatric considerations, and current trends [J]. Journal of Neurosurgery, 2015, 123(4):1098-107.Https://doi.org/10.3171/2014.11.JNS14622.
[8] Salam A A, Ibbett I and Than N. Paediatric cranioplasty: A review [J]. Interdisciplinary Neurosurgery, 2018, 13: 59-65. Https://doi.org/10.1016/j.inat.2018.03.004.
[9] Baldo S, Tacconi L. Effectiveness and safety of subcutaneous abdominal preservation of autologous bone flap after decompressive craniectomy: a prospective pilot study [J]. World Neurosurgery, 2010, 73(5):552-556.Https://doi.org/10.1016/j.wneu.2010.02.018.
[10] Grant GA, Jolley M, Ellenbogen RG, et al. Failure of autologous bone-assisted cranioplasty following decompressive craniectomy in children and adolescents [J]. J Neurosurg, 2004, 100 (2 Suppl): 163-168. Https://doi.org/10.3171/ped.2004.100.2.0163.
[11] Cai YK, Zhang XL, Chen XB, et al. Autologous bone fragments for skull reconstruction after microvascular decompression [J]. BMC Surgery, 2022, 22(395):1-6. Https://doi.org/10.1186/s12893-022-01820-8.
[12] Matsumoto K, Kohmura E, Kato A, et al. Restoration of small bone defects at craniotomy using autologous bone dust and fibrin glue [J]. Surg Neurol, 1998, 50: 344-346. Https://doi.org/10.1016/S0090-3019(98)00081-0.
[13] Zheng F, Xu H, Spreckelsen N von, et al. Early or late cranioplasty following decompressive craniotomy for traumatic brain injury: A systematic review and meta-analysis[J]. J Int Med Res. 2018, 46(7):2503-2512. Https://doi.org/10.1177/0300060518755148.
[14] De Cola MC, Corallo F, Pria D, et al. Timing for cranioplasty to improve neurological outcome: A systematic review [J]. Brain Behav, 2018, 8(11): e01106. Https://doi.org/10.1002/brb3.1106.
[15] Wolff A, Santiago GF, Belzberg M, et al. Adult cranioplasty reconstruction with customized cranial implants: Preferred technique, timing, and biomaterials[J]. J Craniofac Surg, 2018, 29(4):887-894.Https://doi.org/10.1097/SCS.0000000000004385.
[16] De Bonis P, Frassanito P, Mangiola A, et al. Cranial repair: how complicated is filling a "hole"? [J]. J Neurotrauma, 2012, 29(6):1071-1076. Https://doi.org/10.1089/neu.2011.2116.
[17] Pasick CM, Margetis K Santiago GF, et al. Adult Cranioplasty [J]. Journal of Craniofacial Surgery, 2019, 30(7): 2138-2143.Https://doi.org/10.1097/SCS.0000000000005659.
[18] Zuo K-q, Xiao G-y, Du C-m, et al. Controllable phases evolution and properties of zinc-phosphate/strontium‑zinc-phosphate composite conversion coatings on Ti: Effect of temperature [J]. Surf Coat Tech, 2022, 447: 128885.Https://doi.org/10.1016/j.surfcoat.2022.128885.
[19] Zuo K-q, Gong Z-y, Xiao G-y, et al. Microstructural evolution of strontium‑zinc-phosphate coating on titanium via changing Zn2+ concentration in phosphate solution for enhanced osteogenic activity [J]. Surf Coat Tech, 2022, 433: 128143.Https://doi.org/10.1016/j.surfcoat.2022.128143.
[20] Jeyaraj P. Efficacy and versatility of the 3-D titanium mesh implant in the closure of large post-craniectomy osseous defects, and its therapeutic role in reversing the syndrome of the trephined: clinical study of a case series and review of literature [J]. J Maxillofac Oral Surg, 2016, 15(1): 82-92. Https://doi.org/10.1007/s12663-015-0807-0.
[21] Chen D , Wang T , Xu Z , et al. Application of 3D computer-assisted printing technique combined with plastic titanium mesh in the reconstruction of maxillary defect [J]. Chinese journal of otorhinolaryngology head and neck surgery, 2020, 55(3):200-204. Https://doi.org/10.3760/cma.j.issn.1673-0860.2020.03.003.
[22] Meyer H, Khalid SI, Dorafshar AH, Byrne RW. The materials utilized in cranial Reconstruction: past, current, and future [J]. 5Plastic Surgery, 2021, 29(3):184196. Https://doi.org/10.1177/2292550320928560.
[23] Zhang M, Qi M-l, Yuan K, et al. Integrated porous polyetheretherketone implants for treating skull defect [J]. Journal of Materials Research and Technology, 2022, 22: 728-734. Https://doi.org/10.1016/j.jmrt.2022.11.122.
[24] Sharma N, Aghlmandi S, Dalcanale F, et al. Quantitative assessment of point-of-care 3D-printed patient-specific polyetheretherketone (PEEK) cranial implants [J]. Int J Mol Sci, 2021, 22(16): 8521.Https://doi.org/10.3390/ijms22168521.
[25] Jonkergouw J., S.E.C.M. van de Vijfeijken, Nout E., et al. Outcome in patient-specific PEEK cranioplasty: A two-center cohort study of 40 implants [J]. Journal of Cranio-Maxillofacial Surgery, 2016, 44(9):1266-1272.Https://doi.org/10.1016/j.jcms.2016.07.005.
[26] Yu K, Shao X, Tian D, et al. Therapeutic effect of bone cement injection in the treatment of intraosseous ganglion of the carpal bones [J]. Experimental and therapeutic medicine, 2016, 3:1537-1541. Https://doi.org/10.3892/etm.2016.3487.
[27] Vince GH, Kraschl J, Rauter H, et al. Comparison between autologous bone grafts and acrylic (PMMA) implants-A retrospective analysis of 28 cranioplasty procedures [J]. J Clin Neurosci, 2019, 61:205-209. Https://doi.org/10.1016/j.jocn.2018.10.017.
[28] Thien A, King NK, Ang BT, et al. Comparison of polyetheretherketone and titanium cranioplasty after decompressive [J]. World Neurosurg, 2015, 83(2): 176-180. Https://doi.org/10.1016/j.jocn.2018.10.017.
[29] Lam S, Kuether J, Fong A, et al. Cranioplasty for large-sized calvarial defects in the pediatric population: a review [J]. Craniomaxillofac Trauma reconstr, 2015, 8(2): 159-170. Https://doi.org/10.1055/s-0034-1395880.
[30] Levi B, Hyun JS, Montoro DT, et al. In vivo directed differentiation of pluripotent stem cells for skeletal regeneration [J]. Proc Natl Acad Sci U S A, 2012, 109(50): 20379-20384. Https://doi.org/10.1073/pnas.1218052109.
[31] Levi B, James AW, Nelson ER, et al. Human adipose derived stromal cells heal critical size mouse calvarial defects [J]. PLoS One, 2010, 5(6): e11177. Https://doi.org/10.1371/journal.pone.0011177.
[32] Wang S, Yang Y, Koons GL, et al. Tuning pore features of mineralized collagen/PCL scaffolds for cranial bone regeneration in a rat model [J]. Mater Sci Eng C, 2020, 106: 110186. Https://doi.org/10.1016/j.msec.2019.110186.
[33] Wang S, Zhao Z, Yang Y, et al. A high-strength mineralized collagen bone scaffold for large-sized cranial bone defect repair in sheep [J]. Regen Biomater, 2018, 5(5): 283-292. Https://doi.org/10.1093/rb/rby020.
[34] Feroze AH, Walmsley GG, Choudhri O, et al. Evolution of cranioplasty techniques in neurosurgery: historical review, pediatric considerations, and current trends [J]. J Neurosurg, 2015, 123 (4): 1098-1107. Https://doi.org/10.3171/2014.11.JNS14622.
[35] Rahman C.V., Ben-David D., Dhillon A., et al. Controlled release of BMP-2 from a sintered polymer scaffold enhances bone repair in a mouse calvarial defect model [J]. J Tissue Eng Regen Med, 2014, 8: 59-66. Https://doi.org/10.1002/term.1497.
[36] Hu T, Zhang H, Yu W, et al. The combination of concentrated growth factor and adipose-derived stem cell sheet repairs skull defects in rats [J]. Tissue Eng Regen Med, 2021, 18: 905-913. Https://doi.org/10.1007/s13770-021-00371-y.
[37] Novais A, Lesieur J, Sadoine J, et al. Priming dental pulp stem cells from human exfoliated deciduous teeth with fibroblast growth factor-2 enhances mineralization within tissue-engineered constructs implanted in craniofacial bone defects [J]. Stem Cell Transl Med, 2019, 8(8): 844-857. Https://doi.org/10.1002/sctm.18-0182.