- Title:
- Algorithms for closeness, additional closeness and residual closeness
- Author:
Chavdar Dangalchev
- Author Affiliation:
Institute of Mathematics and Informatics Bulgarian Academy of Sciences, Sofia, Bulgaria
- Received:Mar.3, 2022
- Accepted:Mar.22, 2023
- Published:Apr.11, 2023
Closeness, residual closeness, additional closeness.
[1] Dangalchev Ch. (2006) Residual closeness in networks. Phisica A. 365:556-564. doi:10.1016/j.physa.2005.12.020.
[2] Dangalchev Ch. (2020) Additional Closeness and Networks Growth. Fundamenta Informaticae. 176(1):1-15. doi:10.3233/FI-2020-1960
[3] Dangalchev Ch. (2022) Additional Closeness of Cycle Graphs. IJFCS. 33(8): 1033-1052. doi:10.1142/s0129054122500149.
[4] Floyd, R.(1962) Algorithm 97: Shortest path. Communications of the ACM, 5(6):345. doi:10.1145/367766.368168
[5] Williams, R. (2014). Faster all-pairs shortest paths via circuit complexity. Proceedings of the 46th Annual ACM Symposium on Theory of Computing (STOC ’14). New York: ACM. 664–673. doi:10.1145/2591796.2591811.
[6] Thorup, M. (1999). sndirected single-source shortest paths with positive integer weights in linear time. Journal of the ACM. 46(3):362–394. doi:10.1145/316542.316548.
[7] Dangalchev Ch. (2011) Residual closeness and generalized closeness. IJFCS. 22(8):1939-1947. doi:10.1142/s0129054111009136.
[8] Aytac A, Odabas Z.N. (2011) Residual closeness of wheels and related networks. IJFCS. 22(5):1229-1240. doi:10.1142/s0129054111008660.
[9] Odabas Z.N, Aytac A. (2013) Residual closeness in cycles and related networks. Fundamenta Informaticae. 124 (3): 297-307. doi:10.3233/FI-2013-835
[10] Turaci T, Okten M. (2015) Vulnerability of Mycielski graphs via residual closeness, Ars Combinatoria. 118: 419-427.
[11] Aytac A, Berberler Z.N.O. (2017) Robustness of Regular Caterpillars. IJFCS. 28(7): 835-841.
[12] Aytac A, Odabas Z.N. (2017) Network robustness and residual closeness. RAIRO-Operations Research. 52(3), 839-847. doi:10.1051/ro/2016071
[13] Turaci T, Aytac V. (2017) Residual Closeness of Splitting Graphs. Ars Combinatoria. 130: 17-27.
[14] Aytac A, Berberler, Z.N.O. (2017) Residual Closeness for Helm and sunflower graphs. TWMS Journal of applied and Engineering Mathematics. 7(2), 209-220.
[15] Dangalchev Ch. (2018) Residual Closeness of Generalized Thorn Graphs. Fundamenta Informaticae. 162(1), 2018, p 1-15. doi:10.3233/FI-2018-1710
[16] Aytac V, Turaci T. (2018) Closeness centrality in some splitting networks. Computer Science Journal of Moldova. 26(3):251-269.
[17] Berberler ZN, Yigit E. (2018) Link Vulnerability in Networks. IJFCS. 29(03):447-456. doi:10.1142/S0129054118500144
[18] Rupnik D, Zerovnik J. (2019) Networks with Extremal Closeness. Fun- ˇ damenta Informaticae. 167(3):219-234. doi:10.3233/fi-2019-1815.
[19] Yigit E., Berberler ZN. (2019) A Note on the Link Residual Closeness of Graphs snder Join Operation. IJFCS. 30(03):417-424.
[20] Yigit E., Berberler ZN. (2019) Link failure in wheel type networks. IJMPC. 30(09):1-12.
[21] Dangalchev Ch. (2020) Closeness of Splitting Graphs. C.R. Acad. Bulg. Sci. 73(4): 461-466.
[22] B. Zhou, Z. Li, H. Guo. (2021) Extremal results on vertex and link residual closeness. IJFCS. 32:1-21. doi:10.1142/S0129054121500295
[23] Cheng M.Q., Zhou B. (2022) Residual closeness of graphs with given parameters. Journal of the Operations Research Society of China.:1-18. doi:10.1007/s40305-022-00405-9
[24] Wang Y., Zhou B. (2022) Residual Closeness, Matching Number and Chromatic Number. The Computer Journal.. doi:10.1093/comjnl/bxac004
[25] Zheng L., Zhou B. (2022) On the spectral closeness and residual spectral closeness of graphs. RAIRO-Operations Research. 56(4):2651-2668. doi:10.1051/ro/2022125.
[26] G¨olpek H.T. (2022) Vulnerability of Banana trees via closeness and residual closeness parameters. Maltepe Journal of Mathematics. 4(2):1-5. doi:10.47087/mjm.1156370.
[27] Zheng L, Zhou B. (2022) Spectra of closeness Laplacian and closeness signless Laplacian of graphs. RAIRO-Operations Research. 56(5):3525–3543. doi:10.1051/ro/2022161.7