Volume 2, Issue 1, No.3 PDF DOWNLOAD
  • Title:
  • Structural scheme of an electro elastic actuator for nano displacement
  • Author:

    Sergey M. Afonin

  • Author Affiliation:

    National Research University of Electronic Technology, MIET, Moscow, Russia

  • Received:Jun.13, 2023
  • Accepted:Jul.4, 2023
  • Published:Jul.18, 2023
Abstract
The structural model of an electro elastic actuator is determined for nano displacement. The structural scheme of an electro elastic actuator is obtained for nanotechnology. The matrix equation of an electro elastic actuator is constructed. The characteristics of a nano piezo actuator are evaluated. The transfer function of a nano piezo actuator is calculated. The mechanical characteristic of the nano transverse piezo actuator is obtained. The transfer function and coefficient of the nano transverse piezo actuator are calculated. 
Keywords

Electro elastic actuator, nano piezo actuator, structural scheme, deformation matrix, nano displacement.

References

[1] Schultz J, Ueda J, Asada H (2017) Cellular Actuators. Butterworth-Heinemann Publisher, Oxford, 382 p.

[2] Afonin SM (2006) Absolute stability conditions for a system controlling the deformation of an elecromagnetoelastic transduser. Doklady Mathematics 74(3): 943-948, doi:10.1134/S1064562406060391.

[3] Uchino K (1997) Piezoelectric actuator and ultrasonic motors. Boston, MA: Kluwer Academic Publisher. 350 p.

[4] Afonin SM (2005) Generalized parametric structural model of a compound elecromagnetoelastic transduser. Doklady Physics50(2): 77-82, doi:10.1134/1.1881716.

[5] Afonin SM (2008) Structural parametric model of a piezoelectric nanodisplacement transducer. Doklady Physics 53(3): 137-143, doi:10.1134/S1028335808030063.

[6] Afonin SM (2006) Solution of the wave equation for the control of an elecromagnetoelastic transduser. Doklady Mathematics 73(2): 307-313, doi:10.1134/S1064562406020402.

[7] Cady WG (1946) Piezoelectricity: An introduction to the theory and applications of electromechancial phenomena in crystals. McGraw-Hill Book Company, New York, London, 806 p.

[8] Mason W, editor (1964) Physical Acoustics: Principles and Methods. Vol. 1. Part A. Methods and Devices. Academic Press, New York, 515p.

[9] Shevtsov SN, Soloviev AN, Parinov IA, Cherpakov AV, Chebanenko VA (2018) Piezoelectric Actuators and Generators for Energy Harvesting. Research and Development. Springer, Cham, 182 p., doi:10.1007/978-3-319-75629-5.

[10] Zhang G, Basit A, Khan MI, Daraz A, Saqib N, Zubir F (2023) Multi frequency controllable in-band suppressions in a broad bandwidth microstrip filter design for 5G Wi-Fi and satellite communication systems utilizing a quad-mode stub-loaded resonator. Micromachines 14(4): 866, doi:10.3390/mi14040866.

[11] Basit A, Khattak MI, Al-Hasan M, Nebhen J, Jan A (2022) Design and analysis of a compact GSM/GPS dual-b and bandpass filter using a T-shaped resonator. Journal of Electromagnetic Engineering and Science 22(2): 138-145, doi:10.26866/jees.2022.2. r. 70.

[12] Satoh Y, Nishihara T, Yokoyama T, Ueda M, Miyashita T (2005) Development of piezoelectric thin film resonator and its impact on future wireless communication systems. The Japan Society of Applied Physics 44(5A): 2883-2894, doi:10.1143/JJAP.44.2883. 

[13] Zwillinger D (1989) Handbook of Differential Equations. Academic Press, Boston, 673 p.

[14] Afonin SM (2006) A generalized structural-parametric model of an elecromagnetoelastic converter for nano- and micrometric movement control systems: III. Transformation parametric structural circuits of an elecromagnetoelastic converter for nano- and micrometric movement control systems, Journal of Computer and Systems Sciences International 45(2): 317-325, doi:10.1134/S106423070602016X.

[15] Afonin SM (2006) Generalized structural-parametric model of an electromagnetoelastic converter for control systems of nano￾and micrometric movements: IV. Investigation and calculation of characteristics of step-piezodrive of nano-and micrometric movements. Journal of Computer and Systems Sciences International 45(6): 1006-1013, doi:10.1134/S1064230706060153.

[16] Afonin SM (2016) Decision wave equation and block diagram of electromagnetoelastic actuator nano- and microdisplacement for communications systems. International Journal of Information and Communication Sciences 1(2): 22-29,doi:10.11648/j.ijics.20160102.12.

[17] Afonin SM (2015) Structural-parametric model and transfer functions of electroelastic actuator for nano- and microdisplacement. Chapter 9 in Piezoelectrics and Nanomaterials: Fundamentals, Developments and Applications. Ed. Parinov IA. Nova Science, New York, pp. 225-242.

[18] Afonin SM (2017) A structural-parametric model of electroelastic actuator for nano- and microdisplacement of mechatronic system. Chapter 8 in Advances in Nanotechnology. Volume 19. Eds. Bartul Z, Trenor J, Nova Science, New York, pp. 259-284.

[19] Afonin SM (2018) Electromagnetoelastic nano- and microactuators for mechatronic systems. Russian Engineering Research 38(12): 938-944, doi:10.3103/S1068798X18120328.

[20] Afonin SM (2012) Nano- and micro-scale piezomotors. Russian Engineering Research 32(7-8): 519-522, doi:10.3103/S1068798X12060032.

[21] Afonin SM (2007) Elastic compliances and mechanical and adjusting characteristics of composite piezoelectric transducers,Mechanics of Solids 42(1): 43-49, doi:10.3103/S0025654407010062.

[22] Afonin SM (2014) Stability of strain control systems of nano-and microdisplacement piezotransducers. Mechanics of Solids 49(2): 196-207, doi:10.3103/S0025654414020095.

[23] Afonin SM (2017) Structural-parametric model electromagnetoelastic actuator nanodisplacement for mechatronics. International Journal of Physics 5(1): 9-15, doi:10.12691/ijp-5-1-2.

[24] Afonin SM (2019) Structural-parametric model multilayer electromagnetoelastic actuator for nanomechatronics. International Journal of Physics 7(2): 50-57, doi:10.12691/ijp-7-2-3.

[25] Afonin SM (2021) Calculation deformation of an engine for nano biomedical research. International Journal of Biomed Research 1(5): 1-4, doi:10.31579/IJBR-2021/028.

[26] Afonin SM (2021) Precision engine for nanobiomedical research. Biomedical Research and Clinical Reviews. 3(4): 1-5, doi:10.31579/2692-9406/051.

[27] Afonin SM (2016) Solution wave equation and parametric structural schematic diagrams of electromagnetoelastic actuators nano- and microdisplacement. International Journal of Mathematical Analysis and Applications 3(4): 31-38.

[28] Afonin SM (2018) Structural-parametric model of electromagnetoelastic actuator for nanomechanics. Actuators 7(1): 1-9, doi: 10.3390/act7010006.

[29] Afonin SM (2019) Structural-parametric model and diagram of a multilayer electromagnetoelastic actuator for nanomechanics. Actuators 8(3): 1-14, doi: 10.3390/act8030052.

[30] Afonin SM (2016) Structural-parametric models and transfer functions of electromagnetoelastic actuators nano- and microdisplacement for mechatronic systems. International Journal of Theoretical and Applied Mathematics 2(2): 52-59, doi: 10.11648/j.ijtam.20160202.15.

[31] Afonin SM (2010) Design static and dynamic characteristics of a piezoelectric nanomicrotransducers. Mechanics of Solids 45(1): 123-132, doi:10.3103/S0025654410010152.

[32] Afonin SM (2018) Electromagnetoelastic Actuator for Nanomechanics. Global Journal of Research in Engineering: A Mechanical and Mechanics Engineering 18(2): 19-23, doi:10.17406/GJRE.

[33] Afonin SM (2018) Multilayer electromagnetoelastic actuator for robotics systems of nanotechnology, Proceedings of the 2018 IEEE Conference EIConRus, pp. 1698-1701, doi:10.1109/EIConRus.2018.8317432.

[34] Afonin SM (2018) A block diagram of electromagnetoelastic actuator nanodisplacement for communications systems. Transactions on Networks and Communications 6(3): 1-9, doi:10.14738/tnc.63.4641.

[35] Afonin SM (2019) Decision matrix equation and block diagram of multilayer electromagnetoelastic actuator micro and nanodisplacement for communications systems, Transactions on Networks and Communications 7(3): 11-21, doi:10.14738/tnc.73.6564.

[36] Afonin SM (2020) Condition absolute stability control system of electromagnetoelastic actuator for communication equipment. Transactions on Networks and Communications 8(1): 8-15, doi:10.14738/tnc.81.7775.

[37] Afonin SM (2020) A Block diagram of electromagnetoelastic actuator for control systems in nanoscience and nanotechnology, Transactions on Machine Learning and Artificial Intelligence 8(4): 23-33, doi:10.14738/tmlai.84.8476.

[38] Afonin SM (2020) Optimal control of a multilayer electroelastic engine with a longitudinal piezoeffect for nanomechatronics systems. Applied System Innovation 3(4): 1-7, doi:10.3390/asi3040053.

[39] Afonin SM (2021) Coded сontrol of a sectional electroelastic engine for nanomechatronics systems. Applied System Innovation 4(3): 1-11, doi:10.3390/asi4030047.

[40] Afonin SM (2020) Structural scheme actuator for nano research. COJ Reviews and Research 2(5): 1-3, doi:10.31031/COJRR.2020.02.000548.

[41] Afonin SM (2018) Structural–parametric model electroelastic actuator nano- and microdisplacement of mechatronics systems for nanotechnology and ecology research. MOJ Ecology and Environmental Sciences 3(5): 306‒309, doi:10.15406/mojes.2018.03.00104.

[42] Afonin SM (2018) Electromagnetoelastic actuator for large telescopes. Aeronautics and Aerospace Open Access Journal 2(5): 270-272, doi:10.15406/aaoaj.2018.02.00060.

[43] Afonin SM (2019) Condition absolute stability of control system with electro elastic actuator for nano bioengineering and microsurgery. Surgery & Case Studies Open Access Journal 3(3): 307–309, doi:10.32474/SCSOAJ.2019.03.000165.

[44] Afonin SM (2019) Piezo actuators for nanomedicine research. MOJ Applied Bionics and Biomechanics 3(2): 56-57, doi:10.15406/mojabb.2019.03.00099.

[45] Afonin SM (2019) Frequency criterion absolute stability of electromagnetoelastic system for nano and micro displacement in biomechanics. MOJ Applied Bionics and Biomechanics 3(6): 137-140, doi:10.15406/mojabb.2019.03.00121.

[46] Afonin SM (2020) Multilayer piezo engine for nanomedicine research. MOJ Applied Bionics and Biomechanics 4(2): 30-31, doi:10.15406/mojabb.2020.04.00128.

[47] Afonin SM (2021) Structural scheme of electromagnetoelastic actuator for nano biomechanics. MOJ Applied Bionics and Biomechanics 5(2): 36-39, doi:10.15406/mojabb.2021.05.00154.

[48] Afonin SM (2020) Multilayer engine for microsurgery and nano biomedicine. Surgery & Case Studies Open Access Journal 4(4): 423-425, doi:10.32474/SCSOAJ.2020.04.000193.

[49] Afonin SM (2019) A structural-parametric model of a multilayer electroelastic actuator for mechatronics and nanotechnology. Chapter 7 in Advances in Nanotechnology. Volume 22. Bartul Z, Trenor J, Nova Science, New York, pp. 169-186.

[50] Afonin SM (2020) Electroelastic digital-to-analog converter actuator nano and microdisplacement for nanotechnology. Chapter 6 in Advances in Nanotechnology. Volume 24. Eds. Bartul Z, Trenor J, Nova Science, New York, pp. 205-218.

[51] Afonin SM (2021) Characteristics of an electroelastic actuator nano- and microdisplacement for nanotechnology. Chapter 8 in Advances in Nanotechnology. Volume 25. Eds. Bartul Z, Trenor J, Nova Science, New York, pp. 251-266, doi:10.52305/TANO4731.

[52] Afonin SM (2022) An absolute stability of nanomechatronics system with electroelastic actuator. Chapter 9 in Advances in Nanotechnology. Volume 27. Eds. Bartul Z, Trenor J, Nova Science, New York, pp. 183-198, doi:10.52305/YOPZ1532.

[53] Afonin SM (2021) Rigidity of a multilayer piezoelectric actuator for the nano and micro range. Russian Engineering Research 41(4): 285-288, doi:10.3103/S1068798X21040031.

[54] Afonin SM (2023) Electroelastic actuator of nanomechatronics systems for nanoscience. Chapter 2 in Recent Progress in Chemical Science Research. Volume 6. Ed. Min HS, B P International, India, UK. London, pp. 15-27, doi:10.9734/bpi/rpcsr/v6/3837C.

[55] Afonin SM (2023) Harmonious linearization of hysteresis characteristic of an electroelastic actuator for nanomechatronics systems. Chapter 34 in Physics and Mechanics of New Materials and Their Applications. Proceedings of the International Conference PHENMA 2021-2022, Springer Proceedings in Materials series. Volume 20. Eds. Parinov IA, Chang SH, Soloviev AN. Springer,Cham, pp. 419-428, doi:10.1007/978-3-031-21572-8_34.

[56] Afonin SM (2022) Piezo engine for nano biomedical science. Open Access Journal of Biomedical Science 4(5): 2057-2059, doi:10.38125/OAJBS.000490.

[57] Afonin SM (2022) An engine for nanochemistry. Journal of Chemistry & its Applications 1(1): 1-4, doi:10.47363/JCIA/2022(1)101.

[58] Afonin SM (2022) Nano drive for biomedical science and research. American Journal of Biomedical Science and Research 15(3): 260-263, doi:10.34297/AJBSR.2022.15.002102.

[59] Afonin SM (2022) An engine for nanomedicine and nanotechnology. Nanomedicine & Nanotechnology Open Access 7(2): 1-6,doi:10.23880/nnoa-16000217.

[60] Afonin SM (2023) Structural parametric model and diagram of electromagnetoelastic actuator for nanodisplacement in chemistry and biochemistry research. Chapter 7 in Current Topics on Chemistry and Biochemistry. Volume 9. Ed. Baena OJR, B P International, India, UK. London, pp. 77-95, doi:10.9734/bpi/ctcb/v9/4003C.

[61] Nalwa HS, editor (2004) Encyclopedia of Nanoscience and Nanotechnology. Los Angeles: American Scientific Publishers. 10 Volumes.

[62] Bhushan B, editor (2004) Springer Handbook of Nanotechnology. New York: Springer, 1222 p.

Copyright 2018 - 2023 Sanderman Publishing House