Volume 2, Issue 2, No.2 PDF DOWNLOAD
  • Title:
  • The reasons for enormous accumulation of the geodynamic tension in Eastern Turkey: a multidisciplinary study
  • Author:

    Lev Eppelbaum1,2, Youri Katz3 and Zvi Ben-Avraham1

  • Author Affiliation:

    1.Department of Geophysics, Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel

    2.Azerbaijan State Oil and Industry University, 20 Azadlig Ave., Baku, Azerbaijan

    3.Faculty of Life Sciences, Tel Aviv University, Rama

  • Received:Jan.19, 2024
  • Accepted:Feb. 4, 2024
  • Published:Feb. 18, 2024
Abstract
The catastrophic earthquakes in Eastern Turkey (Eastern Mediterranean) require their geodynamic understanding. The two most decisive events with magnitudes of 7.95 and 7.86 on 06.02.2023, followed by a series of more than 10,000 significant aftershocks. These tragic events led to the death of more than 60 thousand people. The above values indicate the colossal tension created in the Earth's crust. The region where these strongest earthquakes occurred is a complex junction zone of four tectonic plates: Eurasian, Arabian, African, and Anatolian. The joint movement of these plates (consisting, in turn, of tectonic elements of different ages) occurs at an average rate of 6–18 mm per year. After two marked powerful shocks and a series of aftershocks, some sectors of the Anatolian plate shifted to the southwest by more than 11 meters. Our recent publications indicated the presence of a giant, rotating quasi-ring structure below the Easternmost Mediterranean. This research contains significant newly obtained data. The quantitative analysis of the sat-ellite-derived gravity data indicates the lower mantle occurrence of the anomalous target. Examination of the geoid anom-alies map also testifies to the deep origin of this structure. The regional seismic tomography data confirm the presence of anomalous zones at a depth of 1500-1700 km. The GPS vector map and the comprehensive review of paleomagnetic data display the counterclockwise rotation of this structure. Analysis of the recently constructed magnetic field ΔZ pattern commonly proves the presence of this quasi-ring structure. The newly developed paleobiogeographic map is consistent with the proposed physical–geological model. A widespread analysis of tectonic, petrological, and mineralogical data implies a connection between the discovered deep structure and near-surface processes. A crucial for understanding the nature of the considered seismic stress is its location near the expressed bend of the Mesozoic terrane belt, where the Arabian Plate is deeply intruded into the Alpine-Himalayan belt. Thus, the rotation of this giant deep structure may accu-mulate the stress effect retrieved from the satellite, airborne, and surface geophysical observations. We propose that this stress, along with the known Earth’s crust seismological activity in this region, is the causative reason for the catastrophic geodynamic events in Eastern Turkey. 
Keywords

Geodynamics, GPS, gravity, magnetic and paleomagnetic data analysis, geoid isolines, paleobiogeographical scheme, integrated analysis, counterclockwise rotation.

References

[1] Allen, P. A., 2011. Surface impact of mantle processes. Nature Geosciences, 498-499. https://doi.org/10.1038/ngeo1216

[2] Trubitsyn, V. P., 2012. Propagation of oceanic plates through the boundary between the upper and lower mantle. Doklady Earth Sci., 446, 1220-1222. https://doi.org/10.1134/S1069351308030014

[3] Cloetingh, S., Willet, S. D., 2013. Linking deep Earth and surface processes. EOS, Trans. Am. Geophys. Union, 94, 53-54. https://doi.org/10.1002/2013EO050002

[4] Domeier, M., Doubrovine, P. V., Torsvik, T. H., Spakman, W., Bull, A. L., 2016. Global correlation of lower mantle structure and past subduction. Geophysical Research Lett., 43, 4945-4953. https://doi.org/10.1002/2016GL068827

[5] Cloetingh, S., Tibaldi, A., Dobrzhinetskaya, L., Matenco, L., Nader, F. and de Vries, B. v. W., 2018. From the deep Earth to the surface: A multiscale approach. Global Planet. Change, 171, 1-322.

[6] Marquardt, H., Ballmer, M., Cottaar, S. and Konter, J. (Eds.), 2021. Mantle Convection and Surface Expressions. Amer. Geophysical Union, Geoph. Monograph Series, Wiley, N.J., USA, 512 p.

[7] Karabulut, H., Güvercin, S.E., Hollingsworth, J. and Konca1, A.Ö., 2023. Long silence on the East Anatolian Fault Zone (Southern Turkey) ends with devastating double earthquakes (6 February 2023) over a seismic gap: implications for the seismic potential in the Eastern Mediterranean region. Jour. of the Geological Society, London, 180, 1-10. https://doi.org/10.1144/jgs2023-021

[8] Ben-Avraham, Z., Ginzburg, A., Makris, J. and Eppelbaum, L., 2002. Crustal structure of the Levant basin, eastern Mediterra-nean. Tectonophysics, 346, 23-43. https://doi.org/10.1016/S0040-1951(01)00226-8

[9] Ben-Avraham, Z., Schattner, U., Lazar, M., Hall, J.K., Ben-Gai, Y., Neev, D. and Reshef, M., 2006. Segmentation of the Le-vant continental margin, eastern Mediterranean. Tectonics, 25, TC5002, 1-17. https://doi.org/10.1029/2005TC00182426

[10] Tatar, O., Piper, J.D.A., Gürsoy, H., Heimann, A. and Koşbulut, F., 2004. Neotectonic deformation in the transition zone between the Dead Sea Transform and the East Anatolian Fault Zone, Southern Turkey: a palaeomagnetic study of the Karasu Rift Volcanism. Tectonophysics, 385, 17-43. https://doi.org/10.1016/j.tecto.2004.04.005

[11] Faccenna, C., Becker, T.W., Auer, L., Billi, A., Boschi, L., Brun, J.P., Capitanio, F.A., Funiciello, F., Horvàth, F., Jolivet, L., Piromallo, C., Royden, L., Rossetti, F. and Serpelloni, E., 2014. Mantle dynamics in the Mediterranean. Review of Geophysics, 52, 283‒332. https://doi.org/10.1002/2013RG000444

[12] Uzel, B., Langereis, C. G., Kaymakci, N., Sozbilir, H., Ozkaymak, C. and Ozkaptan, M., 2015. Paleomagnetic Evidence for an Inverse Rotation History of Western Anatolia during the Exhumation of Menderes Core Complex. Earth and Planet. Sci. Lett., 414, 108-125. https://doi.org/10.1016/j.epsl.2015.01.008

[13] Eppelbaum, L., Katz, Yu., Klokochnik, J., Kosteletsky, J., Zheludev, V. and Ben-Avraham, Z., 2018. Tectonic Insights into the Arabian-African Region Inferred from a Comprehensive Examination of Satellite Gravity Big Data. Global and Planetary Change, 171, 65‒87. https://doi.org/10.1016/j.gloplacha.2017.10.011

[14] Reilinger, R. E., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., Ozener, H., Kadirov, F., Guliyev, I. et al., 2006. GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. Jour. of Geophysical Research, BO5411, 1‒26. https://doi.org/10.1029/2005JB004051

[15] Eppelbaum, L. V., Ben-Avraham, Z., Katz, Y., Cloetingh, S., Kaban, M., 2020. Combined Multifactor Evidence of a Giant Lower-Mantle Ring Structure Below the Eastern Mediterranean. Positioning, 11, 11‒32. https://doi.org/10.4236/pos.2020.112002

[16] Eppelbaum, L. V., Ben-Avraham, Z., Katz, Y., Cloetingh, S., Kaban, M., 2021. Giant quasi-ring mantle structure in the African-Arabian junction: Results derived from the geological-geophysical data integration. Geotectonics (Springer), 55, No. 1, 67‒93. https://doi.org/10.1134/S0016852121010052

[17] Ambraseys, N.N. and Finkel, C.F., 1995. Seismicity of Turkey and adjacent areas: a historical review, 1500–1800. ErenYayinlari Publ., 240 p.

[18] Alpyürür, M. and Lav, M.A., 2022. An assessment of probabilistic seismic hazard for the cities in Southwest Turkey using historical and instrumental earthquake catalogs. Natural Hazards, 114, 335-365. https://doi.org/10.1007/s11069-022-05392-x 

[19] Wells, D.L. and Coppersmith, K.J., 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area and surface displacement. Bull. of the Seismol. Society of America, 84(4), 974‐1002. https://doi.org/10.1785/BSSA0840040974

[20] Khesin, B.E., Alexeyev, V.V. and Eppelbaum, L.V., 1996. Interpretation of Geophysical Fields in Complicated Environments. Modern Appr. in Geophysics, Vol. 14, Kluwer, Dordrecht, 368 p.

[21] Eppelbaum, L.V., Nikolaev, A.V. and Katz, Y.I., 2014. Space location of the Kiama paleomagnetic hyperzone of inverse polarity in the crust of the eastern Mediterranean. Doklady Earth Sciences (Springer), 457, No. 6, 710-714. https://doi.org/10.1134/S1028334X14080212

[22] Eppelbaum, L.V. and Katz, Yu.I., 2015. Eastern Mediterranean: Combined geological-geophysical zonation and paleogeodynamics of the Mesozoic and Cenozoic structural-sedimentation stages. Marine and Petroleum Geology, 65, 198‒216. https://doi.org/10.1016/j.marpetgeo.2015.04.008

[23] Faccenna, C., Jolivet, L., Piromallo, C. and A. Morelli, 2003. Subduction and depth of convection in the Mediterranean mantle. Jour. of Geophys. Res.: Solid Earth, 108, 1-13. https://doi.org/10.1029/2001JB001690

[24] Muttoni, G., Kent, D.V., Garzanti, E., Brack, P., Abrahamsen, N. and Gaetani, M., 2003. Early Permian Pangea ’B’ to Late Permian Pangea ‘A’. Earth Planet. Sci. Lett., 215, 379-394. https://doi.org/10.1016/S0012-821X(03)00452-7

[25] Stampfli, G.M., Hochard, C., Verard, C., Wilhem, C. and von Raumer, J., 2013. The formation of Pangea. Tectonophysics, 593, 1-19. https://doi.org/10.1016/j.tecto.2013.02.037

[26] Rolland, Y., Hassig, M., Bosch, D., Bruguier, D., Melis, R., Galoyan, G., Topuz, G., Sahakyan, L., Avagyan, A. and Sosson, M., 2020. The East Anatolia–Lesser Caucasus ophiolite: An exceptional case of large-scale obduction, synthesis of data and numerical modelling. Geosci. Front., 11, 83-108. https://doi.org/10.1016/j.gsf.2018.12.009

[27] Stern, R.J. and Johnson, P.R., 2010. Continental lithosphere of the Arabian Plate: A geologic, petrologic, and geophysical synthesis. Earth-Sci. Rev., 101, 29-67. https://doi.org/10.1016/j.earscirev.2010.01.002

[28] Jolivet, L., Faccenna, L., Agard, P., de Lamotte, D. F., Menant, A., Sternai, P. and Guillocheau, F., 2016. Neo-Tethys geodynamics and mantle convection: From extension to compression in Africa and a conceptual model for obduction. Canad. J. Earth Sci., 53, 1-15. https://doi.org/10.1139/cjes-2015-0118

[29] Mahmoud, S.M., 2003. Seismicity and GPS-derived crustal deformation in Egypt. Geodynamics, 35, 333-352. https://doi.org/10.1016/S0264-3707(02)00135-7 

[30] Khaffou, M., Raji, M. and El-Ayachi, M., 2023. East African Rift Dynamics. E3S Web of Conferences, 412, 01030, 1-10. https://doi.org/10.1051/e3sconf/202341201030

[31] Véronnet, A., 1912. Rotation de l’Ellipsoide Hétérogène et Figure Exacte de la Terre. J. Math. Pures et Appl., 8, Ser. 6, 331‒463.

[32] Barka, A. and Reilinger, R., 1997. Active tectonics of the Eastern Mediterranean region: deduced from GPS, neotectonic, and seismicity data. Ann. Geophys., 40, 587-610.

[33] McClusky, S. et al., 2000. Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. Jour. of Geophys. Res., 105, 5695-5719. https://doi.org/10.1029/1999JB900351

[34] Boschi, L., Faccenna, C. and Becker, T.W., 2010. Mantle structure and dynamic topography in the Mediterranean basin. Geophys. Res. Lett., 37, L20303, 1-5. https://doi.org/10.1029/2010GL045001

[35] Eppelbaum, L.V. and Katz, Y.I., 2012b. Key features of seismo-neotectonic pattern of the Eastern Mediterranean. Izvestiya, Acad. Sci. Azerb. Rep., Ser.: Earth Sci., No. 3, 29-40.

[36] Eppelbaum, L.V. and Katz, Yu.I., 2017. A New Regard on the Tectonic Map of the Arabian-African Region Inferred from the Satellite Gravity Analysis. Acta Geophysica, 65, 607-626. https://doi.org/10.1007/s11600-017-0057-2

[37] Eppelbaum, L. and Katz, Yu., 2020. Significant tectonic-geophysical features of the African-Arabian tectonic region: An overview. Geotectonics (Springer), 54, No. 2, 266-283. https://doi.org/10.1134/S0016852120020041

[38] Kaban, M.K., El Khrepy, S., Al-Arifi, N., Tesauro, M. and Stolk, W., 2016. Three-dimensional density model of the upper mantle in the Middle East: Interaction of diverse tectonic processes. Jour. of Geophys. Res., Ser.: Solid Earth, 121, 5349-5364. https://doi.org/10.1002/2015JB012755

[39] Sandwell, D.T. and Smith, W.H.F., 2009. Global marine gravity from retracked Geosat and ERS-1 altimetry: ridge segmentation versus spreading rate. Jour. of Geophysical Research, 114(B01411), 1–18. https://doi.org/10.1029/2008JB006008

[40] Barbeau, E.J., 2003. Polynomials. Springer, New York, 455 p.

[41] Telford, W.M., Geldart, L.R. and Sheriff, R.E., 2004. Applied Geophysics. Cambridge Univ. Press (2nd ed.), Cambridge, 770 p.

[42] Eppelbaum, L.V. and Khesin, B.E., 2012. Geophysical Studies in the Caucasus. Springer, Heidelberg, 411 p.

[43] Aleinikov, A.L., Belikov, V.T. and Eppelbaum, L.V., 2001. Some Physical Foundations of Geodynamics (in Russian, contents, and summary in English). Kedem Printing-House, Tel Aviv, Israel, 172 p.

[44] Makris, J., Henke, C.H., Egloff, F. and Akamaluk, T., 1991. The gravity field of the Red Sea and East Africa. Tectonophysics, 198, 369-381. https://doi.org/10.1016/0040-1951(91)90161-K

[45] Gass, I.G. and Masson-Smith, D., 1963. The geology and gravity anomalies of the Troodos Massif, Cyprus. Philos. Trans. R. Soc. London, Ser. A 255, 417-466. https://doi.org/10.1098/rsta.1963.0009

[46] Garini, E. and Gazeras, G., 2023. The 2 earthquakes of February 6th, 2023, in Turkey. Preliminary Report. NTUA, Greece.

[47] Doubre, C., Deprez, A., Masson, F., Socquet, A., Lewi, E., Grandin, R., Nercessian, A., Ulrich, P., De Chabalier, J.-B., Saad, I., Abayazid, A., Peltzer, G., Delorme, A., Calasis, E. and Wright, T., 2017. Current deformation in Central Afar and triple junction kinematics deduced from GPS and InSAR measurements. Geophys. Jour. Intern., 208, 936-953. https://doi.org/10.1093/gji/ggw434

[48] Richards, M.A. and Hager, B.H., 1984. Geoid anomalies in a dynamic Earth. Jour. of Geophysical Research, B 89, 5987–6002. https://doi.org/10.1029/JB089iB07p05987

[49] Ricard, Y., Vigny, C. and Froidevaux, C., 1989. Mantle heterogeneities, geoid, and plate motion: a Monte Carlo inversion. Jour. of Geophysical Research, 94 (B10), 13,739-13,754. https://doi.org/10.1029/JB094iB10p13739

[50] Mao, W. and Zhong, S., 2021. Constraints on mantle viscosity from intermediate-wavelength geoid anomalies in mantle convection models with plate motion history. Jour. of Geoph. Research: Solid Earth, 126, e2020JB021561, 1-25. https://doi. org/10.1029/2020JB021561

[51] National Geospatial-Intelligence Agency, EGM2008 – WGS 84 Version. https://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008/egm08_wgs84.html. Accessed December 12, 2023.

[52] Kissel, C. and Laj, C., 1988. Paleomagnetic Rotations and Continental Deformation. NATO ASI Series: Mathematical and Physical Sciences. Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, USA; London, UK, 530 p.

[53] McElhinny, M.W., 1989. Paleomagnetism and Plate Tectonics. Cambridge Univ. Press, 235 p.

[54] Tauxe, L., 2002. Paleomagnetic Principles and Practice. Kluwer Acad. Publishers, N.Y. – Boston – Dordrecht, 299 p.

[55] Khramov, A.N., 1984. Paleomagnetic Directions and Pole Positions: Data for the USSR (Catalogue), No. 1 of World Data Center, Ser. B, Geophys. Comm. Acad. Sci. SSSR, Moscow.

[56] Nur, A., Ron, H. and Scott, O., 1989. Mechanics of distributed fault and block rotation. In: (C. Kissel and C. Laj, Eds.), Paleomagnetic Rotations and Continental Deformation, Kluwer Academic Publ., 209-228. https://doi.org/10.1007/978-94-009-

0869-7_14

[57] Platzman, E.S., Platt, J.P., Tapirdamaz, C., Sanver, M. and Rundle, C.C., 1994. Why are there no clockwise rotations along the North Anatolian Fault Zone? Journal of Geophysical Research: Solid Earth, 99(B11), 21705–21715. https://doi.org/10.1029/94JB01665

[58] Duermeijer, C.E., Krijgsman, C.E., Langereis, C.G. and Ten Veen, J.H., 1998. Post-early Messinian counterclockwise rotations on Crete: Implications for Late Miocene to recent kinematics of the southern Hellenic arc. Tectonophysics, 298, 177-189. https://doi.org/10.1016/S0040-1951(98)00183-8

[59] Kissel, C., Laj, C., Poisson, A. and Gorur, N., 2003. Paleomagnetic reconstruction of the Cenozoic evolution of the Eastern Mediterranean. Tectonophysics, 362, 199-217. https://doi.org/10.1016/S0040-1951(02)00638-8

[60] Marchev, P., Raicheva, R., Downes, H., Vaselli, O., Chiaradia, M. and Moritz, R., 2004. Compositional diversity of Eocene–Oligocene basaltic magmatism in the Eastern Rhodopes, SE Bulgaria: Implications for genesis and tectonic setting. Tectonophysics, 393, 301-328. https://doi.org/10.1016/j.tecto.2004.07.045

[61] Piper, J.D.A., Tatar, O., Gürsoy, H., Koçbulut, F. and Mesci, B.L., 2006. Paleomagnetic analysis of neotectonic deformation in the Anatolian accretionary collage, Turkey. In: (Dilek, Y. and Pavlides, S., Eds.), Postcollisional Tectonics and Magmatism in the Mediterranean Region and Asia. Geol. Soc. of America Spec. Paper 409, 417‐439. https://doi.org/10.1130/2006.2409(20)

[62] Borradaile, G.J., Lagroix, F., Hamilton, T.D. and Trebilcock, D.A., 2010. Ophiolite tectonics, rock magnetism and paleomagnetism, Cyprus. Surv. Geophys., 31, 285-359. https://doi.org/10.1007/s10712-009-9090-2

[63] Henry, B., Homberg, C., Mroueh, M., Hamdan, W. and Higazi, W., 2010. Rotations in Lebanon inferred from new palaeomagnetic data and implications for the evolution of the Dead Sea Transform system. In (C. Homberg and M. Bachman, Eds.), Evolution of the Levant Margin and Western Arabia Platform since the Mesozoic, Vol. 341 of Geol. Soc. London, Spec. Publ., 269-285. https://doi.org/10.1144/SP341.13

[64] Lotfi, H.I., 2015. Early Cretaceous counterclockwise rotation of Northeast Africa within the equatorial zone: Paleomagnetic study on Mansouri ring complex, Southeastern Desert, Egypt. NRIAG J. Astron. Geophys., 4(1), 1-15.

[65] Gürer, D., van Hinsbergen, D.J.J., Özkaptan, M., Creton, I., Koymans, M.R., Cascella, A. and Langereis, C.G., 2017. Paleomagnetic constraints on the timing and distribution of Cenozoic rotations in Central and Eastern Anatolia. Solid Earth Discuss., https://doi.org/10.5194/se-2017-66

[66] Çabuk, B.S. and Cengiz, M., 2021. Paleomagnetic rotations in the circum-Marmara region, northwestern Turkey since the Late Cretaceous. Jour. of Asian Earth Sci., 213, 104748, 1-15. https://doi.org/10.1016/j.jseaes.2021.104748

[67] Lazos, I., Sboras, S., Chousianitis, K., Kondopoulou, D., Pikridas, C., Bitharis, S. and Pavlides, S., 2022. Temporal evolution of crustal rotation in the Aegean region based on primary geodetically-derived results and palaeomagnetism. Acta Geodaetica et Geophysica, 57,317–334. https://doi.org/10.1007/s40328-022-00379-3

[68] Bazhenov, M.L. and Burtman, V.S., 2002. Eocene paleomagnetism of the Caucasus (southwest Georgia): Oroclinal bending in the Arabian syntaxis. Tectonophysics, 344, 247-259. https://doi.org/10.1016/S0040-1951(01)00189-5

[69] Hisarli, Z.Z.M., 2011. New paleomagnetic constraints on the Late Cretaceous and Early Cenozoic tectonic history of the Eastern Pontides. Jour. of Geodynamics, 52, 114‒128. https://doi.org/10.1016/j.jog.2010.12.004

[70] Rolland, Y., 2017. Caucasus collisional history: Review of data from East Anatolia to West Iran. Gondwana Research, 49, 130-146. https://doi.org/10.1016/j.gr.2017.05.005

[71] Khalafly, A.A., 2006. Paleomagnetism of the Lesser Caucasus. Takhsil, Baku, 189 p. (in Russian).

[72] Molostovsky, E.A., Pechersky, D.M. and Frolov, I.Yu., 2007. Magnetostratigraphic Timescale of the Phanerozoic and Its Description Using a Cumulative Distribution Function. Izvestiya, Physics of the Solid Earth, 43(10), 811–818. https://doi.org/10.1134/S1069351307100035

[73] Pechersky, D.M., Lyubushin, A.A. and Sharonova, Z.V., 2010. On the synchronism in the events within the core and on the surface of the earth: the changes in the organic world and in the polarity of the geomagnetic field in the Phanerozoic. Izvestiya, Physics of the Solid Earth, 46, 613-623. https://doi.org/10.1134/S1069351310070050

[74] Morris, A., Erson, M.W., Robertson, A.H. and Al-Riyami, K., 2002. Extreme tectonic rotations within an eastern Mediterranean ophiolite (Baer–Bassit, Syria). Earth Planet. Sci. Lett., 202, 247-261. https://doi.org/10.1016/S0012-821X(02)00782-3

[75] Hall, J.K., Krasheninnikov, V.A., Hirsch, F., Benjamini, C. and Flexer, A., 2005. Geological Framework of the Levant, Vol. 2: The Levantine Basin and Israel. Historical Productions-Hall, Jerusalem, Israel.

[76] Sneh, A., Bartov, Y. and Rozensaft, M., 1998. Geological Map of Israel, Scale 1:200,000. Geol. Surv. of Israel, Min. of Nation. Infrastructure, Jerusalem.

[77] Lang, B. and Steinitz, G., 1989. K-Ar dating of Mesozoic magmatic rocks in Israel: A review. Isr. Jour. of Earth Sci., 38, 89-103.

[78] Eppelbaum, L.V. and Katz, Y.I., 2022. Paleomagnetic-geodynamic mapping of the transition zone from ocean to the continent: A review. Applied Sciences, 12, Spec. Issue: Advances in Applied Geophysics, 1-20. https://doi.org/10.3390/app12115419

[79] Baer, G., Heimann, A., Eshet, Y., Weinberger, R., Mussett, A. and Sherwood, G., 1995. The Saharonim Basalt: A Late Triassic – Early Jurassic intrusion in southeastern Makhtesh Ramon, Israel. Israel Jour. of Earth Sci., 44, 1-10. 

[80] Garfunkel, Z. and Katz, A., 1967. New magmatic features in Makhtesh Ramon, southern Israel. Geological Magazine, 104 (No. 6), 608-629. https://doi.org/10.1017/S0016756800050275

[81] Zak, I., 1968. Geological Map of Israel (1:20,000). Makhtesh Ramon, Har Gevanim. Israel Geol. Survey.

[82] Baer, G. and Reches, Z., 1991. Mechanics of emplacement and tectonic implications of the Ramon dike systems, Israel. Jour. of Geophysical Research, 96(B7), 11895-11910. https://doi.org/10.1029/91JB00371

[83] Baer, G., 1993. Flow directions in sills and dikes and formation of cauldrons in eastern Makhtesh Ramon. Israel Jour. of Earth Sci., 42, 133-148.

[84] Segev, A., 2000. Synchronous magmatic cycles during the fragmentation of Gondwana: Radiometric ages from the Levant and other provinces. Tectonophysics, 325(3-4), 257-277. https://doi.org/10.1016/S0040-1951(00)00122-0

[85] Avni, Y., 2001. Har Loz, Sheet 21-III. Geological Map of Israel 1:50,000, Geol. Survey of Israel, Jerusalem.

[86] Zilberman, E. and Avni, Y., 2004a. The geological map of Israel, 1:50,000. Sheet 21-I, Har Hamran. Israel Geol. Surv., Jerusalem.

[87] Zilberman, E. and Avni, Y., 2004b. The geological map of Israel, 1: 50,000. Sheet 21-II: Mizpe Ramon. Israel Geol. Surv., Jerusalem.

[88] Segev, A., Weissbrod, T. and Lang, B., 2005. 40Ar/39Ar dating of the Aptian-Albian igneous rocks in Makhtesh Ramon (Negev, Israel) and its stratigraphic implications. Cretaceous Research, 26, 633-656. https://doi.org/10.1016/j.cretres.2005.03.003

[89] Vapnik, Y., Sharygin, V., Samoilov, V. and Yudalevich, Z., 2007. The petrogenesis of basic and ultrabasic alkaline rocks of Western Makhtesh Ramon, Israel: melt and fluid inclusion study. Int. Jour. Earth Sci. (Geol. Rundsh.), 96, 663-684.https://doi.org/10.1007/s00531-006-0131-5

[90] Yudalevich, Z.A., Fershtater, G.B. and Eyal, M., 2014. Magmatism of Makhtesh-Ramon: Geology, geochemistry, petrogenesis (Conservation area Har Ha-Negev, Israel). Lithosphere, No. 3, 70-92 (in Russian).

[91] Avni, Y., Bartov, Y. and Shen, A., 2016. Har Ardon, Sheet 22-I. Geological Map of Israel 1:50,000, Geol. Survey of Israel, Jerusalem.

[92] Avni, Y., Beker, A. and Zilberman, E., 2017. Be'erot Oded, Sheet 21-IV. Geological Map of Israel 1:50,000, Geol. Survey of Israel, Jerusalem.

[93] Baer, Y., Soudry, D., Bar, O. and Shen, A., 2017. Zofar, Sheet 22-III, IV. Geological Map of Israel 1:50,000, Geol. Survey of Israel, Jerusalem.

[94] Yudalevich, Z. and Vapnik, E., 2018. Xenocrysts and megacrysts of alkali-olivine-basalt-basanite-nephelinite association of Makhtesh Ramon (Israel): Interaction with transporting magmas and morphological adjustment. Lithosphere, 18, No. 5, 70-92 (in Russian).

[95] Ron, H. and Baer, G., 1988. Paleomagnetism of Early Cretaceous rocks from southern Israel. Israel Jour. of Earth Sci., 37, 73-81.

[96] Gvirtzman, G., Weissbrod, T., Baer, G. and Brenner, J., 1996. The age of Aptian stage and its magmatic events: New Ar-Ar ages and paleomagnetic data from the Negev, Israel. Cretaceous Research, 17, 293-310. https://doi.org/10.1006/CRES.1996.0021

[97] Eppelbaum, L.V., Katz, Y.I. and Ben-Avraham, Z., 2012. Israel – Petroleum Geology and Prospective Provinces. AAPG European Newsletter, No. 4, 4-9.

[98] Shimron, A.E. and Lang, B., 1989. New geological data and K-Ar geochronology of the magmatic rocks on the southeast flanks of Mount Hermon. Geol. Surv. Israel Rep. GSI/41/88.

[99] Wilson, M., Shimron, A.E., Rosenbaum, J.M., Preston, J., 2000. Early Cretaceous magmatism of Mount Hermon, Northern Israel. Contrib. to Mineralogy and Petrology, 139, No. 1, 54-67. https://doi.org/10.1007/s004100050573

[100] Shimron, A.E. and Peltz, S., 1993. Early Cretaceous pyroclastic volcanism on the Hermon Range. Geol. Surv. Israel Bull., 84, p. 43.

[101] Lang, B. and Shimron, A.E., 1991. New K-Ar data of the Mount Hermon Mesozoic magmatic rocks. Ministry of Energy and Infrastructure, Geol. Surv. Israel, Min. Energy Resources Division, Report GSI/26/91.

[102] Frank, U., Schwab, M.J. and Negendank, J.F.W., 2002. A lacustrine record of paleomagnetic secular variations from Birkat Ram, Golan Heights (Israel) for the last 4400 years. Phys. Earth Planet. Inter., 133, 21-34. https://doi.org/10.1016/S0031-9201(02)00085-7

[103] Segev, A. and Lang, B., 2002. 40Ar/39Ar dating of Valanginian top Tayasir Volcanics in the Mount Hermonarea , northern Israel . Israel Geological Survey, Current Research, 13, 100-104.

[104] Behar, G., Shaar, R., Tauxe, L., Asefaw, H., Ebert, Y., Heimann, A., Koppers, A.A.P. and Ron, H., 2019. Paleomagnetism and paleosecular variations from the Plio‐Pleistocene Golan Heights volcanic plateau, Israel. Geochemistry, Geophysics, Geosystems, 4319-4334. https://doi.org/10.1029/2019GC008479

[105] Lang, B. and Mimran, Y., 1985. An Early Cretaceous volcanic sequence in central Israel and its significance to the absolute date of the base of the Cretaceous. J. of Geology, 93, 179-184. https://doi.org/10.1086/628939. 

[106] Mor, D., Mihelson, H., Druckman, Y., Mimran, Y., Heimann, A., Goldberg, M. and Sneh, A., 1997. Notes on the geology of Golan Heights. Report GSI/15/97, Jerusalem, 1-18.

[107] Shimron, A.E., 1998. Tectonic evolution of the southern Mount Hermon. Report Geol. Surv. Israel Rep. GSI/10/98.

[108] Segev, A., 2009. 40Ar/39Ar and K-Ar geochronology of Berriasian-Hauteririan and Cenomanian tectomagmatic events in northern Israel: implications for regional stratigraphy. Cretaceous Research, 30, 818-828. https://doi.org/10.1016/j.cretres.2009.01.003

[109] Segev, A. and Sass, E., 2009. The geology of the Carmel region, Albian-Turonian volcano-sedimentary cycles on the northwestern edge of the Arabian platform. Rep. of the Israel Geol. Soc., Jerusalem, 1-77. 

[110] Andersson, D.L., 2007. New Theory of the Earth, 2nd ed. Cambridge Univ. Press, Cambridge, 400 p.

[111] Khain, V.E. and Koronovskii, N.V., 2007. Planet Earth: From the Core to The Ionosphere. Moscow. State. Univ., Moscow (in Russian).

[112] Su, W.-J., Woodward, R.L. and Dziewonski, A.M., 1994. Degree-12 model of shear velocity heterogeneity in the mantle. Jour. of Geophys. Research, Solid Earth, 99, 4945-4980. https://doi.org/10.1029/93JB03408

[113] van der Hilst, R.D., Widiyantoro, S. and Engdahl, E.R., 1997. Evidence for deep mantle circulation from global tomography. Nature, 386, 578-584. https://doi.org/10.1038/386578a0

[114] Wen, L. and Helmberger, D.V., 1998. Ultra-low velocity zones near the core-mantle boundary from broadband PKP precursors. Science, 279, 1701-1703. https://doi.org/10.1126/science.279.5357.17

[115] Schmid, C., van der Lee, S., VanDecar, J.C., Engdahl, E.R. and Giardini, D., 2008. Three-dimensional S velocity of the mantle in the Africa-Eurasia plate boundary region from phase arrival times and regional waveforms. Jour. of Geophys. Research: Solid Earth 113, Art. No. B03306. https://doi.org/10.1029/2005JB004193

[116] Shephard, G.E., Matthews, K.J., Hosseini, K. and Domeier, M., 2017. On the consistency of seismically imaged lower mantle slabs. Scientific Reports, 7, 10976, 1-17. https://doi.org/10.1038/s41598-017-11039-w

[117] van der Meer, D.G., van Hinsbergen, D.J.J. and Spakman, W., 2018. Atlas of the underworld: Slab remnants in the mantle, their sinking history, and a new outlook on lower mantle viscosity. Tectonophysics, 723, 309-448. https://doi.org/10.1016/j.tecto.2017.10.004

[118] Civiero, C., Celli, N.K. and Tesauro, M., 2023. Revisiting the geodynamics of the Middle East region from an integrated geophysical perspective. Journal of Geodynamics, 158, 1-21. https://doi.org/10.1016/j.jog.2023.102005

[119] Scotese, C.R., 1991. Jurassic and Cretaceous plate tectonic reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology, 87, 493-501. https://doi.org/10.1016/0031-0182(91)90145-H

[120] Stampfli, G.M. and Kozur, H.W., 2006. Europe from the Variscan to the Alpine cycles. Geological Society, London, Memoirs, 32, 57-82. https://doi.org/10.1144/GSL.MEM.2006.032.01.04

[121] Arkell, W.J., 1956. Jurassic Geology of the World. Olivier and Boyd, London, 808 p.

[122] Makridin, V.P., Katz, Y.I., Kuzmicheva, E.I., 1968. Principles, methodology and significance of fauna of coral constructions for zoogeographic zonation of Jurassic and Cretaceous seas of Europe, Middle Asia, and adjacent countries. In: (Smirnov, G.A.and Kluzhina, M.L., Eds.), Fossil Organogenic Constructions and Methods of Their Studying. Ural Branch of the USSR Acad. of Sci., 184-195 (in Russian).

[123] Feldman, H.R., 1987. A new species of the Jurassic (Callovian) Brachiopod Septirhynchia from the Northern Sinai. Journal of Paleontology, 61, No. 6, 1156-1172. https://doi.org/10.1017/S002233600002953X

[124] Hirsch, F., 1988. Jurassic biofacies versus sea level changes in the Middle eastern Levant (Ethiopian province). Trans. of the 2nd Intern. Symp. of Jurassic Stratigraphy, Lisbon, 963-981.

[125] Hirsch, F. and Picard, L., 1988. The Jurassic facies in the Levant. Jour. of Petroleum Geology, 11 No. 3, 277-308. https://doi.org/10.1111/j.1747-5457.1988.tb00819.x

[126] Cooper, G.A. 1989. Jurassic Brachiopods of Saudi Arabia. Smithsonian Contributions to Paleobiology, 65, 213 p.

[127] Alizadeh, A.A., Guliyev, I.S., Kadirov, F.A. and Eppelbaum, L.V., 2016. Geosciences in Azerbaijan, Vol. 1. Geology. Springer, Heidelberg, N.Y., 239 p.

[128] Eppelbaum, L.V. and Katz, Y.I., 2023. Where were the initial sources of the allochthonous oceanic crust of the southern Easternmost Mediterranean formed? Trans. of the Intern. Conf. “Mediterranean Geosciences Union 2023” (Springer). Istanbul, Turkey, 26-30 Nov., 2023, 1-6.

[129] George, R.P., Jr., 1978. Structural petrology of the Olympus ultramafic complex in the Troodos ophiolite, Cyprus. Geol. Soc. Amer. Bull., 89, 845-865).https://doi.org/10.1130/0016-7606(1978)89<845:SPOTOU>2.0.CO;2

[130] Chan, G.H.-N., Malpas, J., Xenophontos, C. and Lo, C.-H., 2008. Magmatism associated with Gondwanian rifting and NeoTethyan oceanic basin development: Evidence from the Mamonia Complex, SW Cyprus. Jour. of Geol. Soc. (London, U.K.), 165, 699-709. https://doi.org/10.1144/0016-76492007-050

[131] Aldanmaz, E., van Hinsbergen, D.J.J., Yıldız-Yüksekol, Ö., Schmidt, M.W., McPhee, P.J., Meisel, T., Güçtekin, A. and Mason, P.R.D., 2020. Effects of reactive dissolution of orthopyroxene in producing incompatible element depleted melts and refractory mantle residues during early fore-arc spreading: constraints from ophiolites in Eastern Mediterranean. Lithos, 360–361, 105438, 1-14. https://doi.org/10.1016/j.lithos.2020.105438

[132] Chen, C., Su, B.-X., Wang, C.Y., Uysal, I. and Yao, Z.-S., 2021. Mantle melting models of the Kızıldağ ophiolite in SE Turkey: Two types of partial melting processes in the oceanic upper mantle of southern Neo-Tethys. Lithos, 398-399, No. 106348, 1-17. https://doi.org/10.1016/j.lithos.2021.106348

[133] Rui, H.-C., Yang, J.-C., Lian, D.-Y., Wu, W.W. and Guo, G.-L., 2022. Deep origin of mantle peridotites from the Aladağ ophiolite, Turkey: Implication from trace element geochemistry of pyroxenes and mineralogy of ophiolitic diamonds. Journal of Asian Earth Sciences, 228, No. 105153, 1-16. https://doi.org/10.1016/j.jseaes.2022.105153 

[134] Sharkov, E.V. and Khanna, S., 1987. Evolution of the upper mantle material in regions of intraplate magmatism: Case study of western Syria. Doklady Acad. Sci. SSSR, 297, 684-686.

[135] Esperanca, S. and Garfunkel, Z., 1986. Ultramafic xenoliths from the Mt. Carmel area (Karem Maharal volcano), Israel. Lithos, 19, No. 1, 43–49. https://doi.org/10.1016/0024-4937(86)90014-9

[136] Dobrzhinetskaya, L., Mukhin, P., Wang, Q., Wirth, R., O'Bannon, E., Zhao, W., Eppelbaum, L. and Sokhonchuk, T., 2018. Moissanite (SiC) with metal-silicide and silicon inclusions from tuff of Israel: Raman spectroscopy and electron microscope studies. Lithos, 310-311, 355-368. https://doi.org/10.1016/j.lithos.2017.04.001

[137] Griffin, W.L., Gain, S.E.M., Adams, D.T., Huang, J.-X., Saunders, M., Toledo, V., Pearson, N.J. and O’Reilly, S.Y., 2016. First terrestrial occurrence of tistarite (Ti2O3): Ultra-low oxygen fugacity in the upper mantle beneath Mount Carmel, Israel. Geology, 44, 815-818. https://doi.org/10.1130/G37910.1

[138] Griffin, W.L., Gain, S.E.M., Huang, J.-X., Belousova, E.A., Toledo, V. and O’Reilly, S.Y., 2018. Permian to quaternary magmatism beneath the Mt Carmel area, Israel: Zircons from volcanic rocks and associated alluvial deposits. Lithos, 314-315, 307-322. https://doi.org/10.1016/j.lithos.2018.06.007

[139] Lu, J.-G., Griffin, W.L., Huang, J.-X., Dai, H.-K., Castillo-Oliver, M., O’Reily, S.Y., 2022. Structure and composition of the lithosphere beneath Mount Carmel, North Israel. Contrib. to Mineralogy and Petrology, 177, 29, 1-16. https://doi.org/10.1007/s00410-022-01897-7

[140] Ma, C., Cámara F., Bindi, L. and Griffin, W.L., 2024. Toledoite, TiFeSi, a New Mineral from Inclusions in Corundum Xenocrysts from Mount Carmel, Israel. Crystals, 14, 96, 1-11, https://doi.org/10.3390/ cryst14010096

[141] Eppelbaum, L.V., Vaksman, V.L., Kouznetsov, S.V., Sazonova, L.M., Smirnov, S.A., Surkov, A.V., Bezlepkin, B., Katz, Y., Korotaeva, N.N. and Belovitskaya, G., 2006. Discovering of microdiamonds and minerals-satellites in Canyon Makhtesh Ramon (Negev desert, Israel). Doklady Earth Sciences (Springer), 407, No. 2, 202-204. https://doi.org/10.1134/S1028334X06020097

[142] Eppelbaum, L.V. and Vaksman, V.L., 2017. Makhtesh Ramon Complex Deposit (Southern Israel) –A Window to the Upper Mantle. Intern. Journal of Mining Sciences, 3, No. 1, 1-28. http://dx.doi.org/10.20431/2454-9460.0301001

[143] Barakat, A.A.S. and Kandil, M.R., 2019. Diamond in the newly discovered kimberlite and related rocks, Central Eastern Desert, Egypt. Proceed. of the XXXVI Intern. Conf. “Magmatism of the Earth and Related Strategic Metal Deposits”, St. Petersburg, Russia, 36–42.

[144] Eppelbaum, L.V., Katz, Y.I. and Ben-Avraham, Z., 2023. Geodynamic aspects of magnetic data analysis and tectonic-paleomagnetic mapping in the Easternmost Mediterranean: A review. Applied Sciences, Spec. Issue “Ground-Based Geomagnetic Observations: Techniques, Instruments and Scientific Outcomes”, 13, No. 18, 1-44. https://doi.org/ 10.3390/app131810541

[145] Hancilar et al. (2023). Kahramanmaraş - Gaziantep Türkiye M7.7 Earthquake, 6 February 2023. Strong Ground Motion and Building Damage Estimations. Preliminary Report. Dept. of Earthquake Engineering, Bogazici University, Turkey.

[146] Ben-Avraham, Z., 1992. Development of asymmetric basins along continental transform faults. Tectonophysics, 215, 209-220. https://doi.org/10.1016/0040-1951(92)90082-H

[147] Smit, J., Brun, J.-P., Cloetingh, S. and Z. Ben-Avraham, 2010. The rift-like structure and asymmetry of the Dead Sea Fault. Earth Planet. Sci. Lett., 290, 74-82. https://doi.org/10.1016/j.epsl.2009.11.060

[148] Garfunkel, Z. and Ben-Avraham, Z., 1996. The structure of the Dead Sea basin. Tectonophysics, 266, 155-176. https://doi.org/10.1016/S0040-1951(96)00188-6

[149] Sharon, M., Sagy, A., Kurzon, I., Marco, S. and Rosensaft, M., 2020. Assessment of seismic sources and capable faults through hierarchic tectonic criteria: implications for seismic hazard in the Levant. Nat. Hazards Earth Syst. Sci., 20, 125-148. https://doi.org/10.5194/nhess-20-125-2020

[150] Eppelbaum, L.V., Katz, Y.I. and Ben-Avraham, Z., 2022. Advanced combined geophysical-geological mapping of the Sea of Galilee and its vicinity, In: (A. di Mauro, A. Scozzari, S. Soldovieri, Eds.), Instrumentation and Measurement Technologies for Water Cycle Management, Springer, 553-579. https://doi.org/10.1007/978-3-031-08262-7_23

[151] Ron, H., Freund, R., Garfunkel, Z. and Nur, A., 1984. Block rotation by strike-slip faulting: structural and paleomagnetic evidence. Jour. of Geophysical Research, B 89, 6256-6270. https://doi.org/10.1029/JB089IB07P06256

[152] Bosworth, W., 2024. Continental rift asymmetry and segmentation – contributions from the African plate. Jour. of African Earth Sciences, 210, 105128, 1-15. https://doi.org/10.1016/j.jafrearsci.2023.105128

[153] Artemieva, I., Thybo, H. and Kaban, M.K., 2006. Deep Europe today: Geophysical synthesis of the upper mantle structure and lithospheric processes over 3.5 Ga. In: (D.G. Gee and R.A. Stephenson, Eds.), European Lithosphere Dynamics, Vol. 32 of Geol. Soc. London., Mem., 11–41. https://doi.org/10.1144/GSL.MEM.2006.032.01.02

[154] Elgabry, M., Panza, G.F., Badawy, A.A. and Korrat, I.M., 2012. Imaging a relic of complex tectonics: the lithosphere-asthenosphere structure in the Eastern Mediterranean. Terra Nova, 25, No. 2, 102-109. https://doi.org/10.1111/ter.12011

[155] Alekseenko, S.V., Kuibin, P.A. and Okulov, V.L., 2008. Theory of Concentrated Vortices: An Introduction. Springer. Berlin –Heidelberg – N.Y., 505 p. 

[156] Tselentis, G.-A. and Drakopoulos, J., 1990. Stress Transfer and Nonlinear Stress Accumulation at the North Anatolian Fault, Turkey. PAGEOPH, 132, No. 4, 699-710. https://doi.org/10.1007/BF00876814

[157] Neev, D. and Emery, K.O., 1995. The Destruction of Sodom, Gomorrah, and Jericho: Geological, Climatological, and Archaeological Background. Oxford University Press, N.Y., 175 p.

[158] Stein, R.S., Barka, A. and Dieterich, J.D., 1997. Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. Geoph. Jour. International, 128, 594-604. https://doi.org/10.1111/j.1365-246X.1997.tb05321.x

[159] Hubert‐Ferrari, A., Armijo, R., King, G., Meyer, B. and Barka, A., 2002. Morphology, displacement, and slip rates along the North Anatolian Fault, Turkey. Jour. of Geophysical Research, 107, 1-33. https://doi.org/10.1029/2001JB000393 

[160] Hubert-Ferrari, A., Barka, A., Jacques, E., Nalbant, S., Meyer, B., Armijo, R., Tapponnier, P. and King, G.C.P., 2000. Seismic hazard in the Sea of Marmarafollowing the Izmit earthquake. Nature, 404, 269–273. https://doi.org/10.1038/35005054

[161] Nalbant, S.; McCloskey, J., Steacy, S. and Barka, A.A., 2002. Stress accumulation and increased seismic risk in eastern Turkey. Earth and Planet Sci.Lett., 195, 291-298. https://doi.org/10.1016/S0012-821X(01)00592-1

[162] Vannucci, G., Pondrelli, S., Argnani, S., Morelli, A., Gasperini, P. and Boschi, E., 2004. An Atlas of Mediterranean seismicity. Ann. Geophys., 47 (Suppl. No. 1), 247‒306. https://doi.org/10.4401/ag-3276

[163] Şengör, A.M.C., Tüysüz, O., İmren, C., Sakınç, M., Eyidoğan, H., Görür, N., Le Pichon, X. and Rangin, C., 2005. The North Anatolian Fault: A New Look. Annu. Rev. Earth Planet. Sci., 33, 37-112. https://doi.org/10.1146/annurev.earth.32.101802.120415

[164] Zare, M., Amini, H., Yazdi, P., Sesetyan, K., Demircioglu, M.B., Kalafat, D. and Erdik, M., Giardini, D., Khan, M.A. and Tsereteli, N., 2014. Recent developments of the Middle East catalog. Jour. of Seismology, 18, 749–772.https://doi.org/10.1007/s10950-014-9444-1

[165] Öztürk, S., 2018. Earthquake hazard potential in the Eastern Anatolian region of Turkey: seismotectonic b and Dc-values and precursory quiescence Z-value. Front. Earth Sci., 12(1), 215-236. https://doi.org/10.1007/s11707-017-0642-3

[166] KeAi, 2023. The magnitude of the 2023 Turkish earthquake matches the largest in the country’s history, according to new study (11 April 2023). Phys.org. Retrieved 18 July 2023.

[167] Cetin, H., Güneyli, H. and Mayer, L., 2003. Paleoseismology of the Palu‐Lake Hazar segment of the east Anatolian fault zone, Turkey. Tectonophysics, 374, 163‐197. https://doi.org/10.1016/j.tecto.2003.08.003 

[168] Armijo, R., Flerit, F., King, G. and Meyer, B., 2004. Linear elastic fracture mechanics explains the past and present evolution of the Aegean. Earth and Plan. Sci. Lett., 217, 85‐95, https://doi.org/10.1016/S0012‐821X (03)00590‐9. 

[169] Hubert‐Ferrari, A., King, G., Manighetti, I., Armijo, R., Meyer, B. and Tapponnier, P., 2003. Long‐term elasticity in the continental lithosphere; modelling the Aden Ridge propagation and the Anatolian extrusion process. Geophysical Jour. International, 153, 111‐132. https://doi.org/10.1046/j.1365‐246x.2003.01872.x

[170] Jiang, X., Song, X., Li, T. and Wu, K., 2023. Special focus/Rapid Communication Moment magnitudes of two large Turkish earthquakes on February 6, 2023, from long-period coda. Earthquake Science, 36 (2),169–174. https://doi.org/10.1016/j.eqs.2023.02.008.

[171] Baptie, B. and Segou, M., 2023. The Kahmaran Maras earthquake sequence, Turkey/Syria. British Geological Survey (14 Febr. 2023). Retrieved 21 December 2023.

[172] Çen, K.Ö., Bray, J.D., Frost, J.D., Hortacsu, A., Miranda, E., Moss, R.E.S. and Stewart, J.P., 2023. February 6, 2023 Türkiye Earthquakes: Report on Geoscience and Engineering Impacts. (GEER Association Report 082 ed., 6 May 2023). Earthquake Engin. Research Inst. https://doi.org/doi:10.18118/G6PM34. National Earthquake Information Center (6 February 2023). M 7.8 - Kahramanmaras Earthquake Sequence I. United States Geological Survey. Archived from the original on 6 February 2023. Retrieved 15 July 2023.

[173] National Earthquake Information Center. M 7.5 – Kahramanmaras Earthquake Sequence II. United States Geological Survey. Archived from the original on 6 February 2023. Retrieved 15 July 2023. 

[174] Mikhailov, V.O., Babayantz, I.P., Volkova, M.S., Timoshkina, E.P., Smirnov, V.B. and Tikhotskiy, S.A., 2023. The February 6, 2023, Earthquakes in Turkey: A Model of the Rupture Surface Based on Satellite Radar Interferometry. Doklady Earth Sciences (Springer), 511, 571-577.https://doi.org/10.1134/S1028334X23600627

[175] Gass, I.G., 1968. Is the Troodos Massif of Cyprus a fragment of Mesozoic ocean floor? Nature, 220 (5162), 39-42.

[176] Le Pichon, X., Chamot-Rooke, N., Lallemant, S., Noomen, R. and Veis, G., 1995. Geodetic determination of the kinematics of central Greece with respect to Europe: Implications for eastern Mediterranean tectonics. Jour. of Geophysical Research, 100, B7, 12,675-12,990. https://doi.org/10.1029/95JB00317

[177] Faccenna, C., Bellier, O., Martinod, J., Piromallo, C. and Regard, V., 2006. Slab detachment beneath eastern Anatolia: A 10 possible cause for the formation of the North Anatolian fault. Earth Planet. Sci. Lett., 242, 85-97. https://doi.org/10.1029/2002JB001757

[178] van Hinsbergen, D. J. J., Dekkers, M. J., Bozkurt, E. and Koopman, M., 2010. Exhumation with a twist: Paleomagnetic constraints on the evolution of theMenderes metamorphic core complex, western Turkey. Tectonics, 29(3), TC3009, 1-33. https://doi.org/10.1029/2009TC002596

[179] Kaymakci, N., Langereis, C., Özkaptan, M., Özacar, A. A., Gülyüz, E., Uzel, B. and Sözbilir, H., 2018. Paleomagnetic evidence for upper plate response toa STEP fault, SW Anatolia. Earth and Planetary Science Letters, 498, 101–115. https://doi.org/10.1016/j.epsl.2018.06.022

[180] Jolivet, R., Jara, J., Dalaison, M., Rouet-Leduc, B., Özdemir, A., Dogan, U., Çakir, Z., Ergintav, S. and Dubernet, P., 2023. Daily to Centennial Behavior of Aseismic Slip Along the Central Section of the North Anatolian Fault. Jour. of Geophysical Research: Solid Earth, 128, e2022JB026018, 1-17. https://doi. org/10.1029/2022JB026018

[181] Orovetsky, Yu.P. and Kobolev, V.P., 2008. Connection of geostructures of the main surfaces of the Earth. Trans. of the 12thIntern. Conference “Relationship Between the Surface and Deep Sstructures of the Earth’s Crust”, Petrozavodsk, Russia, 99-102 (in Russian).

[182] Trubitsyn, V.P., 2010. The nature of the boundary between the upper and the lower mantle and its influence on convection. Izvestiya, Phys. of the Solid Earth, 46, 461-476. https://doi.org/10.1134/S1069351310060017

[183] Kovachev, S.A. and Krylov, A.A., 2023. Microseismicity of the Persian Gulf and the Zagros Mountain Massif according to bottom seismological observations. Volcanology and Seismology, No. 6, 41-59. https://doi.org/10.31857/S0203030623700335 

[184] Lusk, A.D., Chatzaras, V., Aldanmaz, E. and Tikoff, B., 2023. Hydration State and Rheologic Stratification of the Lithospheric Mantle Beneath the North Anatolian Fault, Turkey. Geochemistry, Geophysics, Geosystems, 24, e2023GC011096, 1-26. https:// doi.org/10.1029/2023GC011096

[185] Taylor, R.N. and Nesbitt, R.W., 1988. Light rare-earth enrichment of supra subduction-zone mantle: Evidence from the Troodos ophiolite, Cyprus. Geology, 16, 448-451. https://doi.org/10.1130/0091-7613(1988)016<0448:LREEOS>2.3.CO;2

[186] Eppelbaum, L.V. and Katz, Y.I., 2012a. Mineral deposits in Israel: A contemporary view, In: (Eds. Ya’ari, A. and Zahavi, E.D.) Israel: Social, Economic and Political Developments, Nova Science Publishers, N.Y., USA, 1-41.

[187] Skobelin, E.A., Sharapov, I.P. and Bugayov, A.F., 1990. Deliberations of state and ways of perestroika in geology (Has plate tectonics resulted in a revolution in geology?). In: Critical Aspects of the Plate Tectonics Theory. Theophrastus Publ., Athens, Greece, Vol. 1, 17-37.

[188] Khain, V.E., 2001. Tectonics of Continents and Oceans. Nauchnyi Mir, Moscow, 606 p. (in Russian).

[189] Levin, B.F. and Chirkov, E.B., 1999. Features of the latitudinal distribution of seismicity and the rotation of the Earth. Vulcanology and Seismology, No. 6, 65–69 (in Russian).

[190] Eppelbaum, L.V. and Pilchin, A.N., 2005. Quick subsidence of a crustal block in SW Aegean Sea as a possible cause of the end of ancient civilization in the 17th century BC. Trans. of the Intern. Conf. “Atlantis Hypothesis: Searching for a Lost Land”, 11-13 July 2005, Milos Island, Greece.

[191] Ash, R.B., 2008. Basic Probability Theory. Dover Publications, Inc. Mineola, N. Y., 350 p.

Copyright 2018 - 2023 Sanderman Publishing House