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Abstract. Acoustic emission (AE) signal, actually, is the phenomenon of stress wave propagation in steel wires in 

bridge cables. The Semi-Analytical Finite Element (SAFE) method serves as a powerful tool for analyzing wave 

characteristics in most, if not all, of waveguides. In this paper, the SAFE method for circular cross-section waveguide 

was established in section 2. The frequency-spectrums, energy velocity and attenuation coefficient curves for 

viscoelastic steel wires can be obtained readily. Based on the method, the effects of initial tensile stress were studied in 

section 4. It demonstrates that tensile stress tends to increase energy velocities and decrease attenuations in regions 

above cut-off frequencies.  
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1 Introduction 

The theoretical frequency equation for wave motion in an infinite circular cylinder, proposed by J.Pochhammer 

in1876 and C.Chree in1889[1] generally serves as the foundation of single steel wire research. However, due to the 

difficulties and numerical instabilities in solving the equation, its applicability is constrained. The SAFE method is an 

effective substitution for the theoretical method. In SAFE method, the cross section of a waveguide is supposed to be 

discretized by normal Finite Element Method (FEM) procedure, while the wave functions related to space and time 

domain are retained. Numerous researchers have contributed brilliant work on developing the method. Nelson, Dong[2] 

firstly formulated SAFE method for layered orthotropic cylinders and plates with a mono-dimensional element. Gavrić, 

L[3] , Hayashi, T[4] expanded the method to steel rails with a bi-dimensional element. Bartoli, I[5] , furthermore, 

considered arbitrary cross sections of viscoelastic materials and Marzani, A[6] applied the axisymmetric SAFE method 

on multi-layered anisotropic axisymmetric waveguides. 

In the present work, the axisymmetric SAFE method has been introduced to analyze the wave characteristics of a 

high tensile strength steel wire with 5mm diameter, typically used in actual cables, in section 2. In section 3, the full 

frequency spectrums, energy velocity and attenuation curves of the steel wire are obtained. Finally, the influences of 

initial tensile stress on viscoelastic steel wire are studied based on the method.  

2 The SAFE method 

2.1 Mathematical framework 

The wave modes in an infinite cylinder can be classified into three types, namely flexural mode, longitudinal mode 

and torsional mode, noted as ( ),F n m , ( )0,L m , ( )0,T m respectively, in which n and m stand for circumferential number 

and frequency order number. In cylindrical coordinate, the theoretical displacement fields of three types of wave modes 

can be written as below respectively 
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where , ,r z stand for radius, circumferential, and axial coordinates respectively, , ,k t  stand for wavenumber, 

circular frequency and time respectively, finally i denotes the virtual unit. Substituting  , ,
T

r z
u u u


=u , in which 

superscript T denotes transpose, into the classical geometric equation = Lu  and constitutive equation = D  , the 

strain field  
T

r z r z zr  
     =  and stress field  

T

r z r z zr  
     = of a certain wave mode 

can be obtained as well. L and D are compatibility operator in cylindrical coordinate and constitutive matrix which will 

be complex in terms of viscoelastic materials. For the SAFE method, however, applying the virtual work principle with 

the equations above, also discretizing the displacement fields in radius direction with matrix N of mono-dimensional 

quadratic interpolation function, leads to  
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where the asterisk denotes conjugate, 
el

N is the total number of elements, and 
1i i i

l R R
+

= − is the length of i th 

element. After some algebraic calculations, including applying the orthogonality of trigonometric functions and the 

normal element assembling procedures, the frequency equation can be expressed as a quadratic eigenvalue system 

below 
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The system can also be converted into a first-order one by doubling its size 
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Specially, with respect to longitudinal mode and torsional mode, the derivation is much simpler than the procedures 

of flexural modes, since they only possess two degrees of freedom (DOFs) and one DOF respectively in each single 

node. Also the trigonometric functions disappear in the displacement expressions. 

3 Solutions to viscoelastic steel wires 

Regarding viscoelastic materials, all wavenumbers are complex, which means each mode possesses attenuation 

coefficients. In this case, only equation(4) can be applied to solve the eigensystem as ( )k k = . The real part of a 

wavenumbers represents wave oscillation in space domain while its imaginary part, also known as attenuation 

coefficient att , describes amplitude decaying. Generally, most of AE signals received by sensors are those of 

propagative modes with low attenuation. 

In terms of the viscoelastic materials, the damping properties are introduce by complex Young’s modulus and 

Poisson’s ratio  
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where 
l

c and 
s

c are complex bulk longitudinal and shear wave velocity, defined as 

 ( )

1

,

, ,
1 / 2 /

2

l s

l s l s s l
c c i c c


    



−

 
= + = = + 

 
  (7) 

 and  are Lame constants, 
l

 and 
s

 are bulk longitudinal and shear wave attenuation coefficients, for high 

tensile strength steel wire that 0.003 /
l

Np = , 0.008 /
s

Np = . The figures below present the full frequency 

spectrum curves of ( )0,
d

L m and ( )1,
d

F m of a viscoelastic steel wire with 5mm diameter, in which subscript d

represents damp 

 

 
(a) 

 
(b) 

Figure 1. Full frequency spectrum curves of a viscoelastic steel wire  

 (a) ( )1,
d

F m mode; (b) ( )0,
d

L m mode 

(Red line: 
Re Im

100k k  ; blue line: 
Re Im

0.01 100k k  ; green line: 
Re Im

0.01k k  ) 
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(a) Energy velocity curves 
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(b) Attenuation coefficients curves (low area) 

Figure 2. Dispersion curves of 5mm-diameter steel wire with damp 

It can be seen in Figure 1 that the curves separate with each other automatically, being consecutive along with 

frequency axis. Additionally, because of the automatic separations, mode tracking can be readily and clearly achieved. 

In this case, every single curve possesses same signs of att which means the modes affiliated to a same curve all travel 

in a same direction. Energy velocity is able to describe transmission of energy in waveguides, defined as 
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z
P denotes the Poynting vector P of z direction,  denotes the classical 3 3 stress tensor, dot denotes the derivation 

with respect to time, and  denotes the integration domain of a cross-section. The positive energy velocity and 

corresponding attenuation curves are shown in Figure 2. 

Since the curves are consecutive along frequency axis as mentioned before, the energy velocity curves are extended 

to original point. It can be seen that the energy velocities below the cut-off frequencies are extremely small, which 

indicates they cannot carry propagative energies. Except the three curves of elementary modes ( ) ( ) ( )1,1 , 0,1 , 0,1
d d d

F L T

and ( )0,3
d

L , the attenuation curves of other modes tend to firstly decrease with the increase of frequency up to 

minimums of which frequencies are slightly larger than cut-off frequencies, and then increase along frequency axis. The 

energy and attenuation coefficient curves of flexural modes with same m are assembled as well in Figure 3. The curves 

with same m possess same trends while attenuations of modes with higher circumferential numbers are larger in high 

frequency area in each group. 

 

(a)  (b)   

Figure 3. Dispersion curves of flexural modes with same m  

(a) Energy velocity curves; (b) Attenuation coefficient curves 

4 Initial stress effects on viscoelastic steel wire  

In order to clarify the influences of tensile stress on wave characteristics, situations of 0.0,0.2,0.4,0.6,0.8 of ultimate 

tensile strength (UTS, here is1860MPa ) are analyzed in this section. In terms of wave motion in a pre-stressed 

waveguide, the virtual work formulation correspondingly is modified as 
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in which, e and
0

 are non-linear strain field and initial stress field. In the current case, only the axial strain
z

E

should be considered, which is related to initial axial stress
0 z

 , written as 
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Finally, it can be readily derived that the effects of
0 z

 is introduced by a geometric stiffness matrix 
0n z

 =K M

serving as a modification of
3

K . 

Figure 4 illustrates
e

C and Att of ( ),1
d

F n modes under four kinds of axial tensile stresses. It is obvious that higher 

tensile stress is able to accelerate energy velocities and decrease attenuation as well. However, it only happens in 

relatively high frequency regions which are above cut-off frequencies, noted as the dash lines in the figure. While in 

low frequency regions, of which modes have extremely high attenuations, even though attenuations are decreased due 

to tensile stresses, the variations of energy velocities might still be negative, for example the 0 ~ 0.4MHz of ( )2,1
d

F

modes. Fortunately, from a practical point of view, only those propagative modes with low attenuation, on which the 

effects are reasonable and clear, are supposed to be concerned.  
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Figure 4. Dispersion curve variations of ( ),1
d

F n under different initial tensile stress 
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Figure 5. Acoustoelastic constant curves 
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 (a) Absolute value of ( )
eC

S f ; (b) Absolute value of ( )Att
S f  

 

The effects of tensile stress are monotonous; it increases/decreases a certain trend constantly. It also seems that the 

effects are linear, since the range of
e

C and Att curves approximately keep same intervals with each other in each 

frequency point, though the intervals change along with frequency axis. The so called acoustoelastic constants can be 

employed to quantify the effects, defined as 
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In Figure 5, all of the four curves in each figure almost coincide together, which indicates the acoustoelastic 

constants are dependent on frequency only. 

5 Conclusions 

In this paper, the axisymmetric SAFE method has been introduced to analyze the wave characteristics of a high 

tensile strength steel wire with 5 mm diameter, typically used in bridge cables. The circular cross section is discretized 

by mono-dimensional elements.  

The full frequency spectrums can be solved as general eigenvalue problems for viscoelastic materials. Energy 

velocities can be readily computed through stiffness and mass matrices. The attenuation curves, which represent the 

decaying properties of wave modes, could be analyzed. Firstly, they decrease with the increase of frequency up to some 

minimums which correspond some maximums of energy velocities, and then they increase again and converge into 

linear tendencies finally. Generally, the curves of modes with same frequency order number m possess similar 

tendencies. 

The effects of axial tensile stress on energy velocities and attenuation have been studied. It turns out that tensile 

stress could increase and decrease energy velocities and attenuations respectively for most of modes above cut-off 

frequencies. When it comes to modes with high attenuations, the tensile stress may lead to reverse effects. In general, 

the effects of tensile stress are linear, quantified as same acoustoelastic constant for different stress levels. 
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