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Abstract. At present it is assumed that the so-called cosmological term in the Einstein equations of gravity is 

responsible for the accelerated expansion of the universe experimentally observable. However, the discrepancy between 

the experimental data and the estimations of the cosmological constant Λ depending on the explanatory theoretical 

models reaches up to 120 orders of magnitude. The present article is devoted to the development of the idea of a 

neutron cluster (complex) and the solution on its basis to some topical issues of cosmology, in particular the calculation 

of the correct value of the cosmological constant. The consideration is based on the study of solutions of the Newton-

Schrōdinger equations, obtained as a c-2 expansion of the original Newton-Dirac equations for the neutron.  The 

expressions for the potential determining the motion of a baryon (neutron) in the Newtonian interpretation of the 

Friedman-Robertson-Walker model of the universe are compared with the potential resulting from the solution of the N-

S equations at cosmological distances. Based on this comparison, an estimate of the number of neutrons in the cluster is 

determined, consistent with the previously obtained by other methods. The density distribution of the number of 

neutrons in the cluster is determined. Some consequences of the neutron cluster model for modern cosmology are 

discussed. 
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1. Introduction 

The cosmological constant Λ was introduced by A. Einstein to his equations of gravity in 1917 to obtain their 

solution describing the static universe [1]. Subsequently, he considered it a mistake. The reasons for this are described 

in detail in [1]. For some time, models of the non-static universe for various signs of Λ have been considered, and due to 

its small value, |Λ| ≤ 10-55 cm-2 [2], its influence is revealed only on a cosmological scale. At present, under the pressure 

of experimental data, it is assumed that the so-called cosmological term in the equations of gravity is responsible for the 

accelerated expansion of the universe and describes the force counteracting gravity (for Λ> 0). 

The origin of the cosmological constant is related to the quantum properties of matter. Common to the various 

models adopted in modern physics is the connection 𝛬~𝑙𝑝
−2  , here 𝑙𝑝 = √

ℏ𝐺

𝑐3  - called Plank length. However, the 

discrepancy with the experimental data depending on the explanatory theoretical models reaches 120 orders of 

magnitude. 

There have been attempts to obtain a plausible value of Λfrom known world constants. For example, in [3] the 

author uses the ideas of A. Eddington, P. Dirac, etc. on curious numerical relations in cosmology, and compares the 

ratio of the age of the world T and the characteristic timeℏ/mc2 (or, what is the same, the radius of the worldTcandℏ/mc) 

and a dimensionless quantity characterizing the gravitational interaction ℏс/Gm2 = (𝑚𝑃/𝑚)2, here𝑚𝑝 = √
ℏ𝑐

𝐺
 - Plank 

mass.  For m, being the mass of the neutron, these values are equal, respectively, 1042and 2·1038. In the cosmological 

scale, this can be considered an approximate equality (error is less than10% in the logarithmic scale). If we replace the 

first ratio by analogy with another ratio 𝛬−1/2/(ℏ/mc) , as the author suggests, the approximate equality of these 

quantities leads to the expression for Λ: 

𝛬 ≈
𝐺2𝑚6

ℏ4 = (
𝑚

𝑚𝑝
)

6
1

𝑙𝑝
2        (1) 

In the theory of elementary particles, this value Λ corresponds to the vacuum energy density 𝜀 =
𝐺𝑚2

𝜆

1

𝜆3 =
𝐺𝑚6𝑐4

ℏ4 , 

here 𝜆 =
ℏ

𝑚𝑐
. This can be interpreted as the gravitational energy density of a vacuum filled with virtual particles of mass 

m, born at an average distance 𝜆 = ℏ/mc. However, the corresponding value Λ is 7 orders of magnitude greater than the 

permissible value [3].  

It is shown below in the article that this discrepancy can be eliminated by using the concept of a neutron cluster 

(complex) [4]. A neutron cluster (NC) is a bound state of neutrons whose mass increases due to the addition of 

freeneutrons to it. Upon reaching sufficiently large values of the mass of the NC, it turns into a neutron star, and then 

into a black hole1. NC is characterizedby its mass density decreases rapidly with distance from its center [4].  

 
1 We can say that the neutron cluster is the embryo of a neutron star. 
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This idea was used in [5] to calculate the correct, i.e., consistent with astronomical observations, value Λ, which 

leads to the value of the vacuum energy density 𝜀 =
𝐺𝑚2

𝜆

1

𝜆3

1

2Z
, 2𝑍~107where Z makes sense of the number of neutrons 

in the cluster.  

In the next section, we will show how it is possible to obtain the correct value of the cosmological constant by 

comparing the results of calculations within the FRW cosmological model with the results of the analysis of solutions of 

the Newton-Schrōdinger equation. In this way, the idea of the bound state of neutrons (neutron cluster) naturally arises. 

2. Cosmological consideration  

Our consideration begins with the Friedman-Robertson-Walker (FRW) metric, written in Cartesian coordinates [2]: 

𝑑𝑠2 = 𝑐2𝑑𝑡2 − 𝑅2(𝑡) [
𝑑𝑥+𝑑𝑦2+𝑑𝑧2

1+
1

4
𝑘𝑟2

] , 𝑟2 = 𝑥2 + 𝑦2 + 𝑧2      (2) 

k = (-1, 0, 1) – curvature index, determined by the nature of the FRW model [2].  Substituting (2) into the Einstein 

equations 

𝐺𝜇𝜈 = −8𝜋𝐺𝑐−4𝑇𝜇𝜈 , 𝐺𝜇𝜈 = 𝑅𝜇𝜈 −
1

4
𝑅𝜆

𝜆𝑔𝜇𝜈 + 𝛬𝑔𝜇𝜈         (3) 

Tμνand Rμν– are the energy-momentum and Ricci tensors; G is the gravity constant. After some transformations (see 

details in [2]) we obtain an equation for another parameter of the model R(t) for the dust-dominated universe (a dot 

means a time derivative) 

𝑅̇2 =
𝐶

𝑅
+

𝛬𝑐2𝑅2

3
− 𝑘𝑐2, 𝐶 =

8

3
𝜋𝐺𝜌𝑅3 = 𝑐𝑜𝑛𝑠𝑡        (4) 

ρ – is the mass density, and C is a constant, expressing the conservation of the total mass. We note, following [2], 

that (4) coincides with the equation of motion of a particle on the surface of a dust ball of radius R  and mass𝑀 =
4

3
𝜋𝑅3𝜌 under the combined action of the forces of Newtonian gravity and the “cosmological” repulsive force 

1

3
𝛬с2𝑟.  

3. Analysis of solutions of the Newton-Schrӧdinger equation 

A typical baryon (neutron) is always surrounded by a cloud of virtual pairs created by its gravitational field, which 

leads to vacuum polarization, which can be described by the Newton-Schrӧdinger(N-S) equation. Previously, this 

approach was used in [6] for the nonperturbative calculation of the effective gravitational charge of a neutron and in [4] 

for the description of neutron complexes. Referring for details to [6], we write down the N-S equations for the spatial 

part )r(  of the wave function 𝜙(𝑟, 𝑡) = 𝜙(𝑟) 𝑒𝑥𝑝(−𝑖𝜀𝑡/ℏ) 

1

𝑟2

𝜕

𝜕𝑟
(𝑟2 𝜕𝜙

𝜕𝑟
) +

2𝑚

ℏ
(𝜔 − 𝑀𝛷)𝜙 = 0,

1

𝑟2

𝜕

𝜕𝑟
(𝑟2 𝜕𝛷

𝜕𝑟
) = 4𝜋𝐺𝑀|𝜙|2      (5) 

Consideration is limited to spherically symmetric solutions for the scalar potential of the gravitational field Φ and 

the wave function of the baryon field 𝜙 = 𝜙1 + 𝑖𝜙2, ω = ε –Мc2, ε - energy, ℏ - Plank constant; M – mass of a neutron 

cluster.In this case, the wave function   describes the cluster as a whole; |𝜙|2 = |𝜙1|2 + |𝜙2|2 - represents the density 

of the number of neutrons in a cluster. 

Introducing the new function  r=  and new variables, write the equation (5) in dimensionless form 

𝜂𝜌𝜌 + 2[𝜈 − 𝑈]𝜂 = 0, 𝜌2𝑈𝜌𝜌 + 2𝜌𝑈𝜌 = 4𝜋|𝜂|2, 𝜂 =
ℏ

√𝐺𝑀3
𝜒, 𝑈 =

ℏ
2

𝐺2𝑀4 𝛷, 𝜈 =
ℏ

2

𝐺2𝑀5 𝜔, 𝜌 =
𝐺𝑀3

ℏ
2 𝑟(6) 

Numerous studies of the N-S equations performed earlier aimed to investigate their stationary states in connection 

with questions of a fundamental nature, for example, the role of gravity in the measurement procedure. The task was to 

describe the behavior of the wave function of a material object (particle) under the action of its gravitational field (see, 

for example, [7-9]). 

Below, we are mainly interested in the behavior of the gravitational potential U(ρ). This caused a difference in the 

method of numerical investigation of equations (6) (which is described in detail in [6]) in comparison with the works [7 

– 9]2.  

As follows from the calculations, at short distances (on the scales specified by the value M), the potential U(ρ) 

corresponds to repulsion. Physically, this is due to the Heisenberg uncertainty principle, which leads to the appearance 

of pressure that does not allow baryons to stick together into clumps, unlike the classical case in the model of dust 

matter. At intermediate distances, the region of Newtonian attraction can be noted, and finally, at large distances, the 

potential is repulsive, and the character of repulsion corresponds to the cosmological one. A comparison of these two 

approaches: cosmological and quantum-mechanical, allows us to make a bridge between them and, in particular, to 

substantiate the hypothesis of a neutron cluster [4]. 

 Figure 1 shows the results of a numerical study of equations (6), borrowed from [6] 

 
2 As a consequence, this affected the difference in the results, in particular concerning the stationary states of the N-S equations. 
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Figure 1. The results of the numerical study of the equations (6) for ν = 0, i.e., the energy is measured from this level. Initial values 

are set in the left turning point:η1 = η2= 0.01, η1
΄ = - η2 

΄= 1, U = -1, U΄ = -70. 

To compare the numerical results with the relativistic expression (4), it is necessary to consider the behavior of U(ρ) 

at distances where the pressure is negligible compared to gravitational attraction and cosmological repulsion, i.e., for ρ> 

2 (Fig. 1). Below are the results of linear interpolation according to the calculations of U(ρ) (up to the third decimal 

place) 

𝑈(𝜌) ∝ 0.119𝜌-2 + 0.36𝜌−1 − 7.961𝜌0, 𝜌 < 2 

𝑈(𝜌) ∝ −0.21𝜌−1 − 7.92𝜌0 + 0.209𝜌 − 5.928 ∗ 10−3𝜌2, 𝜌 > 2(7) 

Let’s compare two expressions forU(r):(7) and (4). In the classical expression (4) cosmological repulsion prevails at 

large distances, which changes to Newtonian attraction at smaller distances, which corresponds to the term -0.21ρ-1in (7) 

(ρ> 2).On the short distances (ρ< 2) the quantum effects reveal themselves, which are not taken into account in (4). 

On large distance comparison the expressions (4) and (7) gives (in this order):  

U~-
1

6
𝛬𝐶𝑐2𝑟2 

𝑈~ − 5.928 ∗ 10−3 𝐺2𝑀6

ℏ
4 𝑟2   (8) 

where we used the notation ΛC for the cosmological constant to emphasize its “cosmic” origin. From (8) follows the 

expression for ΛC 

 𝛬𝐶 ≈ 3,56*10-2 (
𝑀

𝑚𝑝
)

10
1

𝑙𝑝
2        (9) 

We will omit the numerical coefficient below because it is due not to the physics of the problem, but to the boundary 

values of the variables used in the numerical solution of the N-S equations (6) and does not affect the result3 . 

Comparing ΛСwith the right value obtained above4𝛬𝑅 =
1

2𝑍
(

𝑚

𝑚𝑃
)

6 1

𝑙𝑃
2 , we will get for the specific values of the incoming 

quantities in order of magnitude Z ~ 0.84·107 which is very close to the estimation received earlier [5]: Z ~ 0.5·107, 

where 𝑍 = 𝑀/𝑚. 

4. Neutron density distribution in the neutron cluster 

Consider the question of the neutron density distribution in NC. To do this, we can use the time version of the 

Newton-Schrödinger equation (6). It is shown in [4] that in the spherically symmetric case, the wave function of the NC 

21  i+=  at sufficiently small distances r is described by the equation (  r= ) 

𝑖
𝜕𝜂

𝜕𝜏
= −

𝜕2𝜂

𝜕2𝜌
+

𝛼2

8𝜌2
|𝜂|2𝜂; , 𝛼 =

𝐺𝑀2

𝑐ℏ
= (

𝑀

𝑚𝑃
)

2

; 𝜏 =
𝐺2𝑀5

2ℏ3 𝑡       (10) 

Here,as earlier, M is the mass of the NC, Gis the gravitational constant and r, t–are the usual radial coordinate and 

time. In [4], the behavior of )t,r(  was investigated using a known solution of equation (10) [10]. Below, another, 

self-similar solution (10) is presented: 𝜂(𝜌, 𝜏) = 𝑢(𝑧), z = 𝜌/√𝜏.  By direct substitution, we find that u(z) satisfies the 

equation 

 𝑢″ −
𝑖

2
𝑧𝑢′ −

𝛼2

8𝑧2
|𝑢|2𝑢 = 0        (11) 

Representing 𝑢(𝑧) = 𝑤(𝑧)exp(iz2/8), we obtain the equation for w(z) 

 𝑤″ +
1

4
(

𝑧2

4
+ 𝑖) 𝑤 −

𝛼2

8𝑧2
|𝑤|2𝑤 = 0       (12) 

which, for z<< 1 transforms into the well-known Emden-Fowler equation [10] 

 𝑤″ −
𝛼2

8𝑧2 𝑤3 = 0         (13) 

 
3 This permits to remove objections regarding the arbitrariness of boundary conditions in the numerical solution of the N-S equations 

(6). 
4 We use the subscript R to distinguish the values of Λ obtained in the framework of the relativistic theory of elementary particles. 

ρ 

η1 η1 
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A numerical investigation (13) for a wide range of boundary conditions shows that the solution has a smooth 

monotonic form and grows at z → 0. Figure 2 shows the result of the numerical analysis of the solution of equation (13) 

𝑦 =
𝛼

√8
𝑤,where𝑧 = 𝜌/√𝜏 = 𝑟√𝑀/ℏ𝑡: 

 
Figure 2. The result of the numerical analysis of the equation (13);𝑦 = 𝛼w/√8 . The boundary conditions are set on the right 

boundary of the interval: 𝑦0 = 0.1, 𝑦0
′ = −0.01 

5. Discussion 

The results presented in this paper are based on the use of the N-S equation for gravitating systems and relate to the 

direction that R. Feynman called “the theory of perturbations on the hydrogen atom” [11]. In [11] he pointed out three 

objections to such a construction of the quantum theory of gravity. The first is related to the time scale at which 

gravitational corrections will manifest themselves – this time exceeds the age of the universe. In our context, it is 

determined by the order of magnitude of the value of characteristic time  𝑇 =
2ℏ3

𝐺2𝑀5which for M = m=1.67·10-27 kg 

(neutron mass) is about T ≈ 1.284·1045 years, which exceeds the age of the universe, estimated at 1.375·1010 years. For 

these values to be of the same order, it is enough to consider a neutron complex with mass M = Zm, and for the mass 

number Z, an estimate is obtained:Z ≈ 107. This estimate is very close to the one obtained above within the same model 

based on the considerations used to eliminate the discrepancy between the observed and theoretically predicted values 

of the cosmological constant. 

The second objection is related to the size of systems similar to electromagnetic ones, but held by the forces of 

gravity. It is known that a no-relativistic quantum unit of length ℏ
2/𝐺𝑚3(m – neutron mass) is about 1.15 Кpc, which is 

close to the value of the distance at which the behavior of the rotation speed of spiral galaxies begins to deviate from 

that predicted by Newton's theory: 1 ÷ 5Кpc. The calculations performed using the N-S equations for the Milky Way 

galaxy are given in [12]. 

Finally, the third objection concerning gravitational waves can no longer be considered today after their detection. 

In other words, the objections, or rather Feynman's considerations, were reduced to stating the difficulties that arise 

when trying to comprehend gravitational effects within the framework of known reality and can be overcome or at least 

weakened, by expanding this framework, as in this case, by including neutron clusters in the consideration.  

However, there remains a problem associated with the description of neutron clusters using the N-S equations. The 

N-S equations are one-particle equations, and they can usually be used either to describe a single baryon being affected 

by its gravitational field or to describe the center of mass of a set of baryons. In the latter case, we can talk about 

clusters that do not have spherical symmetry. To apply them to a neutron cluster containing a large number of neutrons 

(according to the estimates given above, about 107), it is necessary to assume that the cluster has a collective degree of 

freedom that allows it to be considered as a whole. The latter is possible if we consider itas a Bose condensate of pairs 

of neutrons with equal and opposite pulses and spin projections, paired like Cooper electron pairs –a phenomenon 

analogous to that which lies in the basement of the superfluid model of the atomic nucleus [13]. In this case, the 

behavior of a neutron cluster can be described by the single-particle equations N-S like a vortex filament in an ideal 

Bose gas [14]. 

At the end of this section, we will focus on the question of the admissibility of comparing the results of two different 

models: the classical FRW cosmological model and the quantum model, on which the main conclusions of the article 

are based. The matter is that the first one is considered accurate, and its conclusions are valid for all distances, while the 

accuracy of the second one is limited, for example, by the use of interpolation methods used to obtain expressions (7). 

However, when discussing the repulsive force that counteracts Newtonian gravity, we must limit our consideration to 

distances that have a physical meaning, in this case not exceeding the size of the universe, or, more precisely, its visible 

part. At the same time, the resulting force, as a repulsive force, manifests itself as such at distances exceeding the size of 
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the universe5. This justifies the applicability of the comparison of expressions (4) and (7) used in the article for 

distances of much smaller dimensions of the universe. This is worth mentioning, especially since the calculation 

performed according to the quantum model for large distances does not allow us to talk about the repulsive nature of the 

resulting force at all.  

6. Conclusion 

The article is devoted to the development of the idea of a neutron cluster and the solution on its basis of some topical 

issues of cosmology, in particular, the calculation of the correct value of the cosmological constant. The consideration is 

based on the study of solutions of the Newton-Schrōdinger (N-S) equations, obtained as a c-2 expansion of the original 

Newton-Dirac equations for the neutron [4, 6].  The expressions for the potential determining the motion of a baryon 

(neutron) in the Newtonian interpretation of the Friedman-Robertson-Walker model of the universe are compared with 

the potential resulting from the solution of the N-S equations at cosmological distances, and based on this comparison, 

an estimate of the number of neutrons in the cluster is obtained, consistent with the previously obtained [5]. The density 

distribution of the number of neutrons in the cluster is determined. Some consequences of the neutron cluster model for 

modern cosmology are discussed. 

The main idea underlying the calculation of the cosmological constant, which leads to its correct value, is concerned 

the feature of quantum vacuum of virtual particles, surrounding gravitational objects. This feature concerns in instability 

this vacuum which leads to formation of giant fluctuations of number of these particles due to the emergence of an 

inhomogeneous gravitational field, which is capable of “pulling apart” the components of the virtual pair without letting 

them annihilate [5].  

The described mechanism is very similar to the one that operates in the case of virtual pairs of particles born near 

the horizon of a black hole, leading to its evaporation. In both cases, the components of the virtual pair do not annihilate 

but diverge under the action of tidal forces. In the case of a black hole, the energy received from one component of the 

pair absorbed by the black hole is enough to send the other component to infinity. In the case of a neutron cluster whose 

mass is significantly less than the mass of a black hole, this energy is only enough to keep the second component in a 

remote orbit.  

Note that, as shown in [15], the presence of an event horizon in the space-time metric is not a prerequisite for 

preventing the annihilation of virtual pairs. 

A similar mechanism for eliminating the difference between the predicted and observed values of the cosmological 

constant by taking into account time fluctuations of the vacuum is described in [16]. 

The idea of the formation of neutral complexes was first proposed by J. Gamov to explain the abundance curve of 

chemical elements [17]. 

The results obtained will help shed new light on physics and the role of neutron formations at different stages of the 

universe's development. 

References 

[1] Weinberg, C. S. The cosmological constant problem (Moris Loeb lectures inphysics, Harvard University. May 2, 3, 5, and 10, 

1988): UTTG_12_88 

[2] Rindler, W. Relativity Special, General and Cosmological. 2nd Ed, (2006) Oxford Univ. Press. 

[3] Zel’dovich, Ya. B. The cosmological constant and the theory of elementary particles,Sov. Phys. Uspekhi (1968) 11, PP. 381–

393.  

[4] Zayko, Y.N. The Dynamics of the Neutron Complexes: From Neutron Star to Black Hole, Int. J. of Astrophysics and Space 

Science (2019), V. 7 (4); PP 45-49, DOI: 0.11648/j.ijass.20190704.11 

[5] The Demystification of the Mystery of the Cosmological Constant,in the book: YuriyZayko, General Relativity in Applications. 

Hypercomputations. Cosmology. Particles, LAP Lambert Academic Publishing (2023) ISBN: 978-620-6-84329-0. 

[6] Zayko, Y.N. Calculation of the Effective Gravitational Charge using the Newton-Schrödinger Equations, International Journal 

of Scientific and Innovative Mathematical Research (2019) V. 7 (6), PP 17-22, DOI: http://dx.doi.org/10.20431/2347-

3142.0706003 

[7] Moroz, I.M., Penrose, R., Tod, P. Spherically-symmetric solutions of theSchrōdinger–Newton equations, Class. Quantum Grav. 

(1998) 15,2733–2742. 

[8] Harrison, R., Moroz, I., Tod, K. P. A numerical study of the Schrōdinger-Newton equation, 1: Perturbing the spherically-

symmetric stationary states, arXiv:math-ph/0208045v1 30 Aug 2002 

[9] Harrison, R., Moroz, I., Tod, K. P. A numerical study of the Schrōdinger-Newton equation, 2: the time-dependent problem, 

arXiv:math-ph/0208046v1 30 Aug 2002 

[10] Polyanin, A.D., Zaitsev. V. F. (2003) Handbook of Nonlinear Partial Differential Equations, (Handbooks of Mathematical 

Equations), 2nd Edition, Chapman and Hall/CRC, Boca Raton. 

[11] Feynman, R. P., Morinigo, F.P., Wagner, W.G. 1995, Feynman Lectures on Gravitation, Ed. By B. Hartfield, Addison-Wesley 

Publishing Co. 

[12] Zayko, Y.N.  Spiral Galaxy Model Free of Dark Matter, Theoretical Physics Letters (2020) 06 (06) pp. 94 – 100, 

https://www.wikipt.org/tphysicsletters, DOI:  10.1490/ptl.dxdoi.com/08-01tpl-sci; Available from: 

https://www.researchgate.net/ publication/347258981_Spiral_Galaxy_Model_Free_of_Dark_Matter 

 
5 By three orders of magnitude with the value accepted in the article Λ ≈ 10-55 cm-2 [2]. 



 
 

6 

 

 

[13] ВоhrА., МоttеlsопВ. R., Pines D., Possible analogy betweenthe excitation spectra of nuclei and those ofthe superconducting 

metals slate (1958) Phys. Rev., 110, № 4, p. 9. 

[14] Lifshitz, E. M.; Pitaevskii, L. P. (1980). Statistical Physics, Part 2: Theory of the Condensed State. Vol.  9 

(1st ed.). Butterworth-Heinemann.. 

[15] Wondrak, M.F., van Suijlekom, W, D., Falcke, H. Gravitational Pair Production and Black Hole Evaporation,arXiv: 

2305.18521v1 [gr-qc] 29 May 2023. 

[16] Wang, Q., Zhen Zhu, Z., Unruh, W.G., How the huge energy of quantum vacuum gravitates to drive the slow accelerating 

expansion of the Universe, arXiv: 1703.00543v2 [gr-qc] 11 May 2017. 

[17] Gamow, G. Expanding Universe and the Origin of Elements (1946) Phys. Rev., 70, 572-575. 

https://en.wikipedia.org/wiki/Evgeny_Lifshitz
https://en.wikipedia.org/wiki/Lev_Pitaevskii
https://en.wikipedia.org/wiki/Butterworth-Heinemann

