Online: 26 December 2022; Volume 2, Issue 1, No.2 PDF DOWNLOAD
  • Title:
  • A critical review of photovoltaic panels thermal management: criteria and methods
  • Author:

    H. Metwally1, N. A. Mahmoud1, W. Aboelsoud1, M. Ezzat2

  • Author Affiliation:

    1.Power Mechanical Engineering, Ain Shams University, Cairo, Egypt

    2.Power Electrical Engineering, Ain Shams University, Cairo, Egypt


Abstract

In the last few years, several studies have analyzed and discussed previous researchers' efforts. The researcher's activities were performed to classify PV panel cooling systems. The review illustrated the effect of the cooling system on the PV panel's thermal management, PV panel efficiency, and PV panel output power. The study focuses on the review of active, passive, and hybrid cooling system applications. The effects of different PCM materials and PCM containers on the PV panel passive cooling system are investigated experimentally and numerically. PCM material simulation is difficult, so the study analyses the available simulation methods and their advantages and disadvantages. The PV panels' active cooling system is very sufficient in both thermal management and energy efficiency. The review also summarizes each cooling technique's advantages and disadvantages for optimum model design and material selection. The study discovered that combining two or more cooling systems increases system efficiency by transferring energy from one to the other.

References

[1] A. Boretti, ‘Integration of solar thermal and photovoltaic, wind, and battery energy storage through AI in NEOM city’, Energy and AI, vol. 3, p. 100038, 2021, doi: 10.1016/j.egyai.2020.100038.

[2] N. Aste et al., ‘A renewable energy scenario for a new low carbon settlement in northern Italy: Biomass district heating coupled with heat pump and solar photovoltaic system’, Energy, p. 118091, 2020, doi: 10.1016/j.energy.2020.118091.

[3] J. Siecker, K. Kusakana, and B. P. Numbi, ‘A review of solar photovoltaic systems cooling technologies’, Renewable and Sustainable Energy Reviews, vol. 79, no. July 2016, pp. 192–203, 2017, doi: 10.1016/j.rser.2017.05.053.

[4] A. Hasan, J. Sarwar, and A. H. Shah, ‘Concentrated photovoltaic: A review of thermal aspects, challenges and opportunities’, Renewable and Sustainable Energy Reviews, vol. 94, no. June, pp. 835–852, 2018, doi: 10.1016/j.rser.2018.06.014.

[5] A. Hasan, S. J. McCormack, M. J. Huang, and B. Norton, ‘Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics’, Solar Energy, vol. 84, no. 9, pp. 1601–1612, 2010, doi: 10.1016/j.solener.2010.06.010.

[6] M. C. Browne, K. Lawlor, A. Kelly, B. Norton, and S. J. M. Cormack, ‘Indoor Characterisation of a Photovoltaic/ Thermal Phase Change Material System’, Energy Procedia, vol. 70, pp. 163–171, 2015, doi: 10.1016/j.egypro.2015.02.112.

[7] A. Shukla, K. Kant, A. Sharma, and P. H. Biwole, ‘Cooling methodologies of photovoltaic module for enhancing electrical efficiency: A review’, Solar Energy Materials and Solar Cells, vol. 160, no. July 2016, pp. 275–286, 2017, doi: 10.1016/j.solmat.2016.10.047.

[8] H. M. Ali, ‘Recent advancements in PV cooling and efficiency enhancement integrating phase change materials based systems – A comprehensive review’, Solar Energy, vol. 197, no. June 2018, pp. 163–198, 2020, doi: 10.1016/j.solener.2019.11.075.

[9] M. Tao, L. Zhenpeng, and Z. Jiaxin, ‘Photovoltaic panel integrated with phase change materials (PV-PCM): technology overview and materials selection’, Renewable and Sustainable Energy Reviews, vol. 116, no. July, p. 109406, 2019, doi: 10.1016/j.rser.2019.109406.

[10] A. Waqas, J. Ji, L. Xu, M. Ali, Zeashan, and J. Alvi, ‘Thermal and electrical management of photovoltaic panels using phase change materials - A review’, Renewable and Sustainable Energy Reviews, vol. 92, no. April, pp. 254–271, 2018, doi: 10.1016/j.rser.2018.04.091.

[11] S. S. Chandel and T. Agarwal, ‘Review of cooling techniques using phase change materials for enhancing efficiency of photovoltaic power systems’, Renewable and Sustainable Energy Reviews, vol. 73, no. October 2016, pp. 1342–1351, 2017, doi: 10.1016/j.rser.2017.02.001.

[12] T. Ma, H. Yang, Y. Zhang, L. Lu, and X. Wang, ‘Using phase change materials in photovoltaic systems for thermal regulation and electrical efficiency improvement: A review and outlook’, Renewable and Sustainable Energy Reviews, vol. 43, pp. 1273–1284, 2015, doi: 10.1016/j.rser.2014.12.003.

[13] M. M. Islam, A. K. Pandey, M. Hasanuzzaman, and N. A. Rahim, ‘Recent progresses and achievements in photovoltaic-phase change material technology: A review with special treatment on photovoltaic thermal-phase change material systems’, Energy Convers Manag, vol. 126, pp. 177–204, 2016, doi: 10.1016/j.enconman.2016.07.075.

[14] Z. Ling et al., ‘Review on thermal management systems using phase change materials for electronic components, Li-ion batteries and photovoltaic modules’, Renewable and Sustainable Energy Reviews, vol. 31, pp. 427–438, 2014, doi: 10.1016/j.rser.2013.12.017.

[15] F. Hachem, B. Abdulhay, M. Ramadan, H. el Hage, M. G. el Rab, and M. Khaled, ‘Improving the performance of photovoltaic cells using pure and combined phase change materials – Experiments and transient energy balance’, Renew Energy, vol. 107, pp. 567–575, 2017, doi: 10.1016/j.renene.2017.02.032.

[16] Z. Li, T. Ma, J. Zhao, A. Song, and Y. Cheng, ‘Experimental study and performance analysis on solar photovoltaic panel integrated with phase change material’, Energy, vol. 178, pp. 471–486, 2019, doi: 10.1016/j.energy.2019.04.166.

[17] W. Yuan et al., ‘Numerical simulation and experimental validation of the solar photovoltaic/thermal system with phase change material’, Appl Energy, vol. 232, no. July, pp. 715–727, 2018, doi: 10.1016/j.apenergy.2018.09.096.

[18] L. Siahkamari, M. Rahimi, N. Azimi, and M. Banibayat, ‘Experimental investigation on using a novel phase change material (PCM) in micro structure photovoltaic cooling system’, International Communications in Heat and Mass Transfer, vol. 100, pp. 60–66, 2019, doi: 10.1016/j.icheatmasstransfer.2018.12.020.

[19] C. Popp, D. Weiß, K. Tribulowski, and B. Weller, ‘Photovoltaic Warm Façades with Phase Change Materials in European Climates’, vol. 9, no. 1, pp. 87–100, 2021.

[20] S. Aneli, R. Arena, A. Gagliano, and V. A. Doria, ‘Numerical simulations of a PV module with phase change material ( PV-PCM ) under variable weather conditions’.

[21] M. Sardarabadi, M. Passandideh-Fard, M. J. Maghrebi, and M. Ghazikhani, ‘Experimental study of using both ZnO/ water nanofluid and phase change material (PCM) in photovoltaic thermal systems’, Solar Energy Materials and Solar Cells, vol. 161, no. November 2016, pp. 62–69, 2017, doi: 10.1016/j.solmat.2016.11.032.

[22] A. Arshad, Y. Yan, M. Jabbal, H. Faraji, P. Talebizadehsardari, and M. Anser, ‘Numerical study of nanocomposite phase change material-based heat sink for the passive cooling of electronic components’, Heat and mass transfer, 2021.

[23] A. Yadav, A. A. Madhavan, and V. K. Vashishtha, Numerical Modelling of Thermal Cooling in PV Panels with NEPCM. Springer Singapore, 2021. doi: 10.1007/978-981-15-9678-0.

[24] C. Kandilli and M. Uzel, ‘Exergoeconomic analysis of photovoltaic thermal systems based on phase change materials and natural zeolites for thermal management’, J Therm Anal Calorim, no. 0123456789, 2021, doi: 10.1007/s10973-021-10574-z.

[25] D. M. C. Shastry and U. C. Arunachala, ‘Thermal management of photovoltaic module with metal matrix embedded PCM’, J Energy Storage, vol. 28, no. January, p. 101312, 2020, doi: 10.1016/j.est.2020.101312.

[26] A. Hassan et al., ‘Thermal management and uniform temperature regulation of photovoltaic modules using hybrid phase change materials-nanofluids system’, Renew Energy, vol. 145, pp. 282–293, 2020, doi: 10.1016/j.renene.2019.05.130.

[27] M. Qasim et al., ‘The effect of using hybrid phase change materials on thermal management of photovoltaic panels – An experimental study’, Solar Energy, vol. 209, no. September, pp. 415–423, 2020, doi: 10.1016/j.solener.2020.09.027.

[28] C. Photovoltaic and S. Cells, ‘Non-Curing Thermal Interface Materials with Graphene Fillers for Thermal Management of Concentrated Photovoltaic Solar Cells’, Journal of Carbon Research Article, vol. 6, no. 2, 2020, doi: 10.3390/c6010002.

[29] R. Simón-Allué, I. Guedea, R. Villén, and G. Brun, ‘Experimental study of Phase Change Material influence on different models of Photovoltaic-Thermal collectors’, Solar Energy, vol. 190, no. July, pp. 1–9, 2019, doi: 10.1016/j.solener.2019.08.005.

[30] A. Hasan, J. Sarwar, H. Alnoman, and S. Abdelbaqi, ‘Yearly energy performance of a photovoltaic-phase change material (PV-PCM) system in hot climate’, Solar Energy, vol. 146, pp. 417–429, 2017, doi: 10.1016/j.solener.2017.01.070.

[31] E. Klugmann-Radziemska and P. Wcisło-Kucharek, ‘Photovoltaic module temperature stabilization with the use of phase change materials’, Solar Energy, vol. 150, pp. 538–545, 2017, doi: 10.1016/j.solener.2017.05.016.

[32] W. Lu, Z. Liu, J. F. Flor, Y. Wu, and M. Yang, ‘Investigation on designed fins-enhanced phase change materials system for thermal management of a novel building integrated concentrating PV’, Appl Energy, vol. 225, no. May, pp. 696–709, 2018, doi: 10.1016/j.apenergy.2018.05.030.

[33] Y. Su, Y. Zhang, and L. Shu, ‘Experimental study of using phase change material cooling in a solar tracking concentrated photovoltaic-thermal system’, Solar Energy, vol. 159, no. August 2017, pp. 777–785, 2018, doi: 10.1016/j.solener.2017.11.045.

[34] S. Sharma, A. Tahir, K. S. Reddy, and T. K. Mallick, ‘Performance enhancement of a Building-Integrated Concentrating Photovoltaic system using phase change material’, Solar Energy Materials and Solar Cells, vol. 149, pp. 29–39, 2016, doi: 10.1016/j.solmat.2015.12.035.

[35] K. Tabet Aoul, A. Hassan, A. H. Shah, and H. Riaz, ‘Energy performance comparison of concentrated photovoltaic – Phase change material thermal (CPV-PCM/T) system with flat plate collector (FPC)’, Solar Energy, vol. 176, no. May, pp. 453–464, 2018, doi: 10.1016/j.solener.2018.10.039.

[36] M. Emam and M. Ahmed, ‘Performance analysis of a new concentrator photovoltaic system integrated with phase change material and water jacket’, Solar Energy, vol. 173, no. July, pp. 1158–1172, 2018, doi: 10.1016/j.solener.2018.08.069.

[37] H. Asgharian and E. Baniasadi, ‘A review on modeling and simulation of solar energy storage systems based on phase change materials’, J Energy Storage, vol. 21, no. July 2018, pp. 186–201, 2019, doi: 10.1016/j.est.2018.11.025.

[38] J. Zhao, T. Ma, Z. Li, and A. Song, ‘Year-round performance analysis of a photovoltaic panel coupled with phase change material’, Appl Energy, vol. 245, no. January, pp. 51–64, 2019, doi: 10.1016/j.apenergy.2019.04.004.

[39] J. Zhao, Z. Li, and T. Ma, ‘Performance analysis of a photovoltaic panel integrated with phase change material’, Energy Procedia, vol. 158, pp. 1093–1098, 2019, doi: 10.1016/j.egypro.2019.01.264.

[40] S. Khanna, K. S. Reddy, and T. K. Mallick, ‘Climatic behaviour of solar photovoltaic integrated with phase change material’, Energy Convers Manag, vol. 166, no. April, pp. 590–601, 2018, doi: 10.1016/j.enconman.2018.04.056.

[41] L. A. Khan and M. M. Khan, ‘Role of orientation of fins in performance enhancement of a latent thermal energy storage unit’, Appl Therm Eng, vol. 175, 2020, doi: 10.1016/j.applthermaleng.2020.115408.

[42] N. Mallya and S. Haussener, ‘Buoyancy-driven melting and solidification heat transfer analysis in encapsulated phase change materials’, Int J Heat Mass Transf, vol. 164, p. 120525, 2021, doi: 10.1016/j.ijheatmasstransfer.2020.120525.

[43] M. Kumar and D. J. Krishna, ‘Influence of Mushy Zone Constant on Thermohydraulics of a PCM’, Energy Procedia, vol. 109, no. November 2016, pp. 314–321, 2017, doi: 10.1016/j.egypro.2017.03.074.

[44] S. Nižetić, M. Arıcı, F. Bilgin, and F. Grubišić-Čabo, ‘Investigation of pork fat as potential novel phase change material for passive cooling applications in photovoltaics’, J Clean Prod, vol. 170, pp. 1006–1016, 2018, doi: 10.1016/j.jclepro.2017.09.164.

[45] Y. Zhou, S. Zheng, and G. Zhang, ‘Artificial neural network based multivariable optimization of a hybrid system integrated with phase change materials, active cooling and hybrid ventilations’, Energy Convers Manag, vol. 197, no. July, p. 111859, 2019, doi: 10.1016/j.enconman.2019.111859.

[46] M. A. Kibria, R. Saidur, F. A. Al-Sulaiman, and M. M. A. Aziz, ‘Development of a thermal model for a hybrid photovoltaic module and phase change materials storage integrated in buildings’, Solar Energy, vol. 124, pp. 114–123, 2016, doi: 10.1016/j.solener.2015.11.027.

[47] J. Zhou, Q. Yi, Y. Wang, and Z. Ye, ‘Temperature distribution of photovoltaic module based on finite element simulation’, Solar Energy, vol. 111, pp. 97–103, 2015, doi: 10.1016/j.solener.2014.10.040.

[48] S. Manikandan, C. Selvam, N. Poddar, K. Pranjyal, R. Lamba, and S. C. Kaushik, ‘Thermal management of low concentrated photovoltaic module with phase change material’, J Clean Prod, vol. 219, pp. 359–367, 2019, doi: 10.1016/j.jclepro.2019.02.086.

[49] N. Arcuri, F. Reda, and M. De Simone, ‘Energy and thermo-fluid-dynamics evaluations of photovoltaic panels cooled by water and air’, Solar Energy, vol. 105, pp. 147–156, 2014, doi: 10.1016/j.solener.2014.03.034.

[50] M. J. Huang, P. C. Eames, and B. Norton, ‘Comparison of predictions made using a new 3D phase change material thermal control model with experimental measurements and predictions made using a validated 2D model’, Heat Transfer Engineering, vol. 28, no. 1, pp. 31–37, 2007, doi: 10.1080/01457630600985634.

[51] B. Kalidasan, A. K. Pandey, S. Shahabuddin, M. Samykano, and M. Thirugnanasambandam, ‘Phase change materials integrated solar thermal energy systems : Global trends and current practices in experimental approaches’, J Energy Storage, vol. 27, no. November 2019, p. 101118, 2020, doi: 10.1016/j.est.2019.101118.

[52] E. Tangsiriratana, W. Skolpap, R. J. Patterson, and K. Sriprapha, ‘Thermal properties and behavior of microencapsulated sugarcane wax phase change material’, Heliyon, vol. 5, no. 8, p. e02184, 2019, doi: 10.1016/j.heliyon.2019.e02184.

[53] C. J. Smith, P. M. Forster, and R. Crook, ‘Global analysis of photovoltaic energy output enhanced by phase change material cooling’, Appl Energy, vol. 126, pp. 21–28, 2014, doi: 10.1016/j.apenergy.2014.03.083.

[54] B. Zivkovic and I. Fujii, ‘Analysis of isothermal phase change of phase change material within rectangular and cylindrical containers’, Solar energy, vol. 70, no. 1, pp. 51–61, 2001, doi: 10.1016/S0038-092X(00)00112-2.

[55] S. Khanna, S. Newar, V. Sharma, K. S. Reddy, and T. K. Mallick, ‘Optimization of fins fitted phase change material equipped solar photovoltaic under various working circumstances’, Energy Convers Manag, vol. 180, no. May 2018, pp. 1185–1195, 2019, doi: 10.1016/j.enconman.2018.10.105.

[56] M. Emam and M. Ahmed, ‘Cooling concentrator photovoltaic systems using various configurations of phase-change material heat sinks’, Energy Convers Manag, vol. 158, no. December 2017, pp. 298–314, 2018, doi: 10.1016/j.enconman.2017.12.077.

[57] S. Mousavi, A. Kasaeian, M. B. Shafii, and M. H. Jahangir, ‘Numerical investigation of the effects of a copper foam filled with phase change materials in a water-cooled photovoltaic/thermal system’, Energy Convers Manag, vol. 163, no. February, pp. 187–195, 2018, doi: 10.1016/j.enconman.2018.02.039.

[58] T. Ma, J. Zhao, and Z. Li, ‘Mathematical modelling and sensitivity analysis of solar photovoltaic panel integrated with phase change material’, Appl Energy, vol. 228, no. June, pp. 1147–1158, 2018, doi: 10.1016/j.apenergy.2018.06.145.

[59] T. Ma, J. Zhao, and J. Han, ‘A Parametric Study about the Potential to Integrate Phase Change Material into Photovoltaic Panel’, Energy Procedia, vol. 142, pp. 648–654, 2017, doi: 10.1016/j.egypro.2017.12.107.

[60] T. Nehari, M. Benlakam, and D. Nehari, ‘Effect of the fins length for the passive cooling of the photovoltaic panels’, Periodica Polytechnica Mechanical Engineering, vol. 60, no. 2, pp. 89–95, 2016, doi: 10.3311/PPme.8571.

[61] M. Emam, S. Ookawara, and M. Ahmed, ‘Performance study and analysis of an inclined concentrated photovoltaic-phase change material system’, Solar Energy, vol. 150, pp. 229–245, 2017, doi: 10.1016/j.solener.2017.04.050.

[62] K. Kant, A. Shukla, A. Sharma, and P. H. Biwole, ‘Heat transfer studies of photovoltaic panel coupled with phase change material’, Solar Energy, vol. 140, pp. 151–161, 2016, doi: 10.1016/j.solener.2016.11.006.

[63] P. H. Biwole, P. Eclache, and F. Kuznik, ‘Phase-change materials to improve solar panel’s performance’, Energy Build, vol. 62, pp. 59–67, 2013, doi: 10.1016/j.enbuild.2013.02.059.

[64] M. Zukowski, ‘Mathematical modeling and numerical simulation of a short term thermal energy storage system using phase change material for heating applications’, Energy Convers Manag, vol. 48, no. 1, pp. 155–165, 2007, doi: 10.1016/j.enconman.2006.04.017.

[65] D. Su, Y. Jia, Y. Lin, and G. Fang, ‘Maximizing the energy output of a photovoltaic–thermal solar collector incorporating phase change materials’, Energy Build, vol. 153, pp. 382–391, 2017, doi: 10.1016/j.enbuild.2017.08.027.

[66] M. J. Huang, P. C. Eames, B. Norton, and N. J. Hewitt, ‘Natural convection in an internally finned phase change material heat sink for the thermal management of photovoltaics’, Solar Energy Materials and Solar Cells, vol. 95, no. 7, pp. 1598–1603, 2011, doi: 10.1016/j.solmat.2011.01.008.

[67] B. Kamkari, H. Shokouhmand, and F. Bruno, ‘Experimental investigation of the effect of inclination angle on convection-driven melting of phase change material in a rectangular enclosure’, Int J Heat Mass Transf, vol. 72, pp. 186–200, 2014, doi: 10.1016/j.ijheatmasstransfer.2014.01.014.

[68] M. J. Huang, P. C. Eames, and B. Norton, ‘Thermal regulation of building-integrated photovoltaics using phase change materials’, Int J Heat Mass Transf, vol. 47, no. 12–13, pp. 2715–2733, 2004, doi: 10.1016/j.ijheatmasstransfer.2003.11.015.

[69] J. Park, T. Kim, and S. B. Leigh, ‘Application of a phase-change material to improve the electrical performance of vertical-building-added photovoltaics considering the annual weather conditions’, Solar Energy, vol. 105, pp. 561–574, 2014, doi: 10.1016/j.solener.2014.04.020.

[70] M. J. Huang, P. C. Eames, and B. Norton, ‘Phase change materials for limiting temperature rise in building integrated photovoltaics’, Solar Energy, vol. 80, no. 9, pp. 1121–1130, 2006, doi: 10.1016/j.solener.2005.10.006.

[71] S. Khanna, K. S. Reddy, and T. K. Mallick, ‘Optimization of solar photovoltaic system integrated with phase change material’, Solar Energy, vol. 163, no. March 2017, pp. 591–599, 2018, doi: 10.1016/j.solener.2018.01.002.

[72] A. Al-Hmoud, D. Sebastia-Saez, and H. Arellano-Garcia, Comparative CFD analysis of thermal energy storage materials in photovoltaic/thermal panels, vol. 46. Elsevier Masson SAS, 2019. doi: 10.1016/B978-0-12-818634-3.50133-8.

[73] M. Arıcı, F. Bilgin, S. Nižetić, and A. M. Papadopoulos, ‘Phase change material based cooling of photovoltaic panel: A simplified numerical model for the optimization of the phase change material layer and general economic evaluation’, J Clean Prod, vol. 189, pp. 738–745, 2018, doi: 10.1016/j.jclepro.2018.04.057.

[74] A. D. Solomon, ‘An easily computable solution to a two-phase Stefan problem’, Solar Energy, vol. 23, no. 6, pp. 525–528, 1979, doi: 10.1016/0038-092X(79)90077-X.

[75] Q. Yu et al., ‘Numerical study on energy and exergy performances of a microencapsulated phase change material slurry based photovoltaic/thermal module’, Energy Convers Manag, vol. 183, no. January, pp. 708–720, 2019, doi: 10.1016/j.enconman.2019.01.029.

[76] B. Chen et al., ‘An experimental study of convective heat transfer with microencapsulated phase change material suspension: Laminar flow in a circular tube under constant heat flux’, Exp Therm Fluid Sci, vol. 32, no. 8, pp. 1638–1646, 2008, doi: 10.1016/j.expthermflusci.2008.05.008.

[77] M. Nouira and H. Sammouda, ‘Numerical study of an inclined photovoltaic system coupled with phase change material under various operating conditions’, Appl Therm Eng, vol. 141, no. November 2017, pp. 958–975, 2018, doi: 10.1016/j.applthermaleng.2018.06.039.

[78] L. Liu, Y. Jia, Y. Lin, G. Alva, and G. Fang, ‘Numerical study of a novel miniature compound parabolic concentrating photovoltaic/thermal collector with microencapsulated phase change slurry’, Energy Convers Manag, vol. 153, no. July, pp. 106–114, 2017, doi: 10.1016/j.enconman.2017.10.005.

[79] G. Li, G. Pei, J. Ji, M. Yang, Y. Su, and N. Xu, ‘Numerical and experimental study on a PV/T system with static miniature solar concentrator’, Solar Energy, vol. 120, pp. 565–574, 2015, doi: 10.1016/j.solener.2015.07.046.

[80] C. S. Malvi, D. W. Dixon-Hardy, and R. Crook, ‘Energy balance model of combined photovoltaic solar-thermal system incorporating phase change material’, Solar Energy, vol. 85, no. 7, pp. 1440–1446, 2011, doi: 10.1016/j.solener.2011.03.027.

[81] P. Lamberg, R. Lehtiniemi, and A. M. Henell, ‘Numerical and experimental investigation of melting and freezing processes in phase change material storage’, International Journal of Thermal Sciences, vol. 43, no. 3, pp. 277–287, 2004, doi: 10.1016/j.ijthermalsci.2003.07.001.

[82] Y. Rabin and E. Korin, ‘An efficient numerical solution for the multidimensional solidification (or melting) problem using a microcomputer, Internat’, Heat Mass Transfer, vol. 36, no. 3, pp. 673–683, 1993.

[83] R. Rabie, M. Emam, S. Ookawara, and M. Ahmed, ‘Thermal management of concentrator photovoltaic systems using new configurations of phase change material heat sinks’, Solar Energy, vol. 183, no. March, pp. 632–652, 2019, doi: 10.1016/j.solener.2019.03.061.

[84] J. Darkwa, J. Calautit, D. Du, and G. Kokogianakis, ‘A numerical and experimental analysis of an integrated TEG-PCM power enhancement system for photovoltaic cells’, vol. 248, no. January, pp. 688–701, 2019, doi: 10.1016/j.apenergy.2019.04.147.

[85] P. Motiei, M. Yaghoubi, and E. GoshtasbiRad, ‘Transient simulation of a hybrid photovoltaic-thermoelectric system using a phase change material’, Sustainable Energy Technologies and Assessments, vol. 34, no. April, pp. 200–213, 2019, doi: 10.1016/j.seta.2019.05.004.

[86] T. Maatallah, R. Zachariah, and F. G. Al-Amri, ‘Exergo-economic analysis of a serpentine flow type water based photovoltaic thermal system with phase change material (PVT-PCM/water)’, Solar Energy, vol. 193, no. July, pp. 195–204, 2019, doi: 10.1016/j.solener.2019.09.063.

[87] S. Rucevskis, P. Akishin, and A. Korjakins, ‘Performance Evaluation of an Active PCM Thermal Energy Storage System for Space Cooling in Residential Buildings’, Environmental and Climate Technologies, vol. 23, no. 2, pp. 74–89, 2019, doi: 10.2478/rtuect-2019-0056.

[88] S. Li, Y. Chen, and Z. Sun, ‘Numerical simulation and optimization of the melting process of phase change material inside horizontal annulus’, Energies (Basel), vol. 10, no. 9, 2017, doi: 10.3390/en10091249.

[89] C. Paper, ‘Temperature Effect on Pv Performance Experimental Results From a 2 . 18 Kwp Thin Film Pv System’, no. October 2015, 2011.

[90] A. D. Brent, V. R. Voller, and K. J. Reid, ‘Enthalpy-porosity technique for modeling convection-diffusion phase change: Application to the melting of a pure metal’, Numerical Heat Transfer, vol. 13, no. 3, pp. 297–318, 1988, doi: 10.1080/10407788808913615.

[91] Z. Jinzhi, Z. Wei, W. U. Dan, Y. Yanping, J. I. Wenhui, and H. E. Wei, ‘A Review on the Heat Pipe Photovoltaic / Thermal ( PV / T ) System’, vol. 30, pp. 1–22, 2021.

[92] S. Preet, B. Bhushan, and T. Mahajan, ‘Experimental investigation of water based photovoltaic/thermal (PV/T) system with and without phase change material (PCM)’, Solar Energy, vol. 155, pp. 1104–1120, 2017, doi: 10.1016/j.solener.2017.07.040.

[93] S. Nižetić, E. Giama, and A. M. Papadopoulos, ‘Comprehensive analysis and general economic-environmental evaluation of cooling techniques for photovoltaic panels, Part II: Active cooling techniques’, Energy Convers Manag, vol. 155, no. October 2017, pp. 301–323, 2018, doi: 10.1016/j.enconman.2017.10.071.

[94] A. S. Abdelrazik, F. A. Al-Sulaiman, R. Saidur, and R. Ben-Mansour, ‘A review on recent development for the design and packaging of hybrid photovoltaic/thermal (PV/T) solar systems’, Renewable and Sustainable Energy Reviews, vol. 95, no. July, pp. 110–129, 2018, doi: 10.1016/j.rser.2018.07.013.

[95] H. Xu, C. Zhang, N. Wang, Z. Qu, and S. Zhang, ‘Experimental study on the performance of a solar photovoltaic/thermal system combined with phase change material’, Solar Energy, vol. 198, no. September 2019, pp. 202–211, 2020, doi: 10.1016/j.solener.2020.01.064.

[96] M. Javidan and A. J. Moghadam, ‘Experimental investigation on thermal management of a photovoltaic module using water-jet impingement cooling Design of Experiment’, Energy Convers Manag, vol. 228, no. December 2020, p. 113686, 2021, doi: 10.1016/j.enconman.2020.113686.

[97] R. Kumar, S. Kumar, R. Nadda, K. Kumar, and V. Goel, ‘Thermo-hydraulic efficiency and correlation development of an indoor designed jet impingement solar thermal collector roughened with discrete multi-arc ribs’, Renew Energy, vol. 189, pp. 1259–1277, Apr. 2022, doi: 10.1016/J.RENENE.2022.03.037.

[98] R. Kumar et al., ‘Influence of artificial roughness parametric variation on thermal performance of solar thermal collector: An experimental study, response surface analysis and ANN modelling’, Sustainable Energy Technologies and Assessments, vol. 52, p. 102047, Aug. 2022, doi: 10.1016/J.SETA.2022.102047.

[99] A. Singhy, R. Thakur, and R. Kumar, ‘Experimental analysis for co-generation of heat and power with convex lens as SOE and linear Fresnel Lens as POE using active water stream’, Renew Energy, vol. 163, pp. 740–754, 2021, doi: 10.1016/j.renene.2020.08.132.

[100] P. K. Mishra, R. Nadda, R. Kumar, A. Rana, M. Sethi, and A. Ekileski, ‘Optimization of multiple arcs protrusion obstacle parameters using AHP-TOPSIS approach in an impingement jet solar air passage’, Heat and Mass Transfer/Waerme- und Stoffuebertragung, vol. 54, no. 12, pp. 3797–3808, 2018, doi: 10.1007/s00231-018-2405-4.

[101] R. Kumar et al., ‘Experimental investigation of impact of the energy storage medium on the thermal performance of double pass solar air heater’, Sustainable Energy Technologies and Assessments, vol. 48, p. 101673, Dec. 2021, doi: 10.1016/J.SETA.2021.101673.

[102] V. Ruuskanen, A. Kosonen, P. Immonen, J. Knuutinen, and B. Herman, ‘Ground source heat pump control methods for solar photovoltaic- assisted domestic hot water heating’, Renew Energy, vol. 177, pp. 732–742, 2021, doi: 10.1016/j.renene.2021.05.139.

[103] M. Dannemand, I. Sifnaios, Z. Tian, and S. Furbo, ‘Simulation and optimization of a hybrid unglazed solar photovoltaic- thermal collector and heat pump system with two storage tanks’, Energy Convers Manag, vol. 206, no. December 2019, p. 112429, 2020, doi: 10.1016/j.enconman.2019.112429.

[104] E. I. Sakellariou and P. J. Axaopoulos, ‘Energy performance indexes for solar assisted ground source heat pump systems with photovoltaic-thermal collectors’, Appl Energy, vol. 272, no. May, p. 115241, 2020, doi: 10.1016/j.apenergy.2020.115241.

[105] G. Emmi, S. Bordignon, A. Zarrella, and M. De Carli, ‘A dynamic analysis of a SAGSHP system coupled to solar thermal collectors and photovoltaic-thermal panels under di ff erent climate conditions’, Energy Convers Manag, vol. 213, no. December 2019, p. 112851, 2020, doi: 10.1016/j.enconman.2020.112851.

[106] A. K. Bhardwaj, R. Kumar, R. Chauhan, and S. Kumar, ‘Experimental investigation and performance evaluation of a novel solar dryer integrated with a combination of SHS and PCM for drying chilli in the Himalayan region’, Thermal Science and Engineering Progress, vol. 20, no. August, p. 100713, 2020, doi: 10.1016/j.tsep.2020.100713.

[107] A. K. Bhardwaj, R. Kumar, and R. Chauhan, ‘Experimental investigation of the performance of a novel solar dryer for drying medicinal plants in Western Himalayan region’, Solar Energy, vol. 177, pp. 395–407, Jan. 2019, doi: 10.1016/J.SOLENER.2018.11.007.

[108] A. K. Bhardwaj, R. Chauhan, R. Kumar, M. Sethi, and A. Rana, ‘Experimental investigation of an indirect solar dryer integrated with phase change material for drying valeriana jatamansi (medicinal herb)’, Case Studies in Thermal Engineering, vol. 10, pp. 302–314, 2017, doi: 10.1016/j.csite.2017.07.009.

[109] A. Kazemian, A. Taheri, A. Sardarabadi, T. Ma, M. Passandideh-Fard, and J. Peng, ‘Energy, exergy and environmental analysis of glazed and unglazed PVT system integrated with phase change material: An experimental approach’, Solar Energy, vol. 201, no. February, pp. 178–189, 2020, doi: 10.1016/j.solener.2020.02.096.

[110] M. S. Hossain, A. K. Pandey, J. Selvaraj, N. A. Rahim, M. M. Islam, and V. V. Tyagi, ‘Two side serpentine flow based photovoltaic-thermal-phase change materials (PVT-PCM) system: Energy, exergy and economic analysis’, Renew Energy, vol. 136, pp. 1320–1336, 2019, doi: 10.1016/j.renene.2018.10.097.

[111] S. R. Mousavi Baygi and S. M. Sadrameli, ‘Thermal Management of Photovoltaic Solar Cells Using Polyethylene Glycol1000 (PEG1000) as a Phase Change Material’, Thermal Science and Engineering Progress, vol. 5, no. May 2017, pp. 405–411, 2018, doi: 10.1016/j.tsep.2018.01.012.

[112] A. Kazemian, M. Hosseinzadeh, M. Sardarabadi, and M. Passandideh-Fard, ‘Experimental study of using both ethylene glycol and phase change material as coolant in photovoltaic thermal systems (PVT) from energy, exergy and entropy generation viewpoints’, Energy, vol. 162, pp. 210–223, 2018, doi: 10.1016/j.energy.2018.07.069.

[113] Y. Zhou, X. Liu, and G. Zhang, ‘Performance of buildings integrated with a photovoltaic-thermal collector and phase change materials’, Procedia Eng, vol. 205, pp. 1337–1343, 2017, doi: 10.1016/j.proeng.2017.10.109.

[114] L. Liu, Y. Jia, Y. Lin, G. Alva, and G. Fang, ‘Performance evaluation of a novel solar photovoltaic–thermal collector with dual channel using microencapsulated phase change slurry as cooling fluid’, Energy Convers Manag, vol. 145, pp. 30–40, 2017, doi: 10.1016/j.enconman.2017.04.089.

[115] W. Lin and Z. Ma, ‘Using Taguchi-Fibonacci search method to optimize phase change materials enhanced buildings with integrated solar photovoltaic thermal collectors’, Energy, vol. 106, pp. 23–37, 2016, doi: 10.1016/j.energy.2016.03.013.

[116] W. Lin, Z. Ma, P. Cooper, M. I. Sohel, and L. Yang, ‘Thermal performance investigation and optimization of buildings with integrated phase change materials and solar photovoltaic thermal collectors’, Energy Build, vol. 116, pp. 562–573, 2016, doi: 10.1016/j.enbuild.2016.01.041.

[117] M. C. Browne et al., ‘Assessing the Thermal Performance of Phase Change Material in a Photovoltaic/Thermal System’, Energy Procedia, vol. 91, pp. 113–121, 2016, doi: 10.1016/j.egypro.2016.06.184.

[118] M. C. Browne, B. Norton, and S. J. McCormack, ‘Phase change materials for photovoltaic thermal management’, Renewable and Sustainable Energy Reviews, vol. 47, pp. 762–782, 2015, doi: 10.1016/j.rser.2015.03.050.

[119] W. Lin, Z. Ma, M. I. Sohel, and P. Cooper, ‘Development and evaluation of a ceiling ventilation system enhanced by solar photovoltaic thermal collectors and phase change materials’, Energy Convers Manag, vol. 88, pp. 218–230, 2014, doi: 10.1016/j.enconman.2014.08.019.

[120] F. Rubbi, K. Habib, R. Saidur, N. Aslfattahi, S. Mohd, and L. Das, ‘Performance optimization of a hybrid PV / T solar system using Soybean oil / MXene nano fl uids as A new class of heat transfer fl uids’, Solar Energy, vol. 208, no. May, pp. 124–138, 2020, doi: 10.1016/j.solener.2020.07.060.

[121] R. Sathyamurthy, A. E. Kabeel, A. Chamkha, A. Karthick, and A. M. Manokar, ‘Experimental investigation on cooling the photovoltaic panel using hybrid nanofluids’, Appl Nanosci, vol. 11, no. 2, pp. 363–374, 2021, doi: 10.1007/s13204-020-01598-2.

[122] M. Lebbi et al., ‘Energy performance improvement of a new hybrid PV / T Bi-fluid system using active cooling and self-cleaning : Experimental study’, Appl Therm Eng, p. 116033, 2020, doi: 10.1016/j.applthermaleng.2020.116033.

[123] P. Jha, B. Das, and R. Gupta, ‘Performance of air-based photovoltaic thermal collector with fully and partially covered photovoltaic module’, Appl Therm Eng, vol. 180, no. March, p. 115838, 2020, doi: 10.1016/j.applthermaleng.2020.115838.

[124] P. M. Sivaram, A. B. Mande, M. Premalatha, and A. Arunagiri, ‘Investigation on a building-integrated passive solar energy technology for air ventilation , clean water and power’, Energy Convers Manag, vol. 211, no. March, p. 112739, 2020, doi: 10.1016/j.enconman.2020.112739.

[125] T. Salameh, M. Tawalbeh, A. Juaidi, and R. Abdallah, ‘A novel three-dimensional numerical model for PV/T water system in hot climate region’, Renew Energy, 2020, doi: 10.1016/j.renene.2020.10.137.

[126] H. H. AL-KAYIEM and M. N. REDA, ‘ANALYSIS OF SOLAR PHOTOVOLTAIC PANEL INTEGRATED WITH GROUND HEAT EXCHANGER FOR THERMAL MANAGEMENT’, vol. 6, no. 1, pp. 17–31, 2021, doi: 10.2495/EQ-V6-N1-17-31.

[127] Y. Ruoping, Y. Xiaohui, L. Fuwei, and W. Huajun, ‘Study of operation performance for a solar photovoltaic system assisted cooling by ground heat exchangers in arid climate , China’, Renew Energy, vol. 155, pp. 102–110, 2020, doi: 10.1016/j.renene.2020.03.109.

[128] U. Abubakar, M. Akmal, and S. Amely, ‘Evaluation of a PV-TEG Hybrid System Configuration for an Improved Energy Output : A Review’, vol. 10, no. 2, pp. 385–400, 2021, doi: 10.14710/ijred.2021.33917.

[129] I. O. P. C. Series and M. Science, ‘Trifold PV-T-TEG ( photovoltaic-thermal-thermoelectric generators ) panel characterization overview Trifold PV-T-TEG ( photovoltaic-thermal-thermoelectric generators ) panel characterization overview’, 2019, doi: 10.1088/1757-899X/595/1/012050.

[130] H. Karami, H. Kaatuzian, and R. Hosseini, ‘A parametrical study on photo-electro-thermal performance of an integrated thermoelectric-photovoltaic cell’, Renew Energy, vol. 138, pp. 542–550, 2019, doi: 10.1016/j.renene.2019.01.094.

[131] H. R. F. Kohan, F. Lot, and M. Eslami, ‘Numerical simulation of a photovoltaic thermoelectric hybrid power generation system’, vol. 174, no. May, pp. 537–548, 2018, doi: 10.1016/j.solener.2018.09.046.

[132] K. Karthick, S. Suresh, M. Muaaz, M. D. Hussain, H. Muhammad, and C. S. S. Kumar, ‘Evaluation of solar thermal system configurations for thermoelectric generator applications : A critical review’, Solar Energy, vol. 188, no. March, pp. 111–142, 2019, doi: 10.1016/j.solener.2019.05.075.

[133] S. Sripadmanabhan et al., ‘A review on various configurations of hybrid concentrator photovoltaic and thermoelectric generator system’, Solar Energy, vol. 201, no. February, pp. 122–148, 2020, doi: 10.1016/j.solener.2020.02.090.

[134] O. Beeri, O. Rotem, E. Hazan, E. A. Katz, A. Braun, and Y. Gelbstein, ‘Hybrid photovoltaic-thermoelectric system for concentrated solar energy conversion: Experimental realization and modeling’, J Appl Phys, vol. 118, no. 11, 2015, doi: 10.1063/1.4931428.

[135] S. Mahmoudinezhad, ‘Numerical parametric study on the performance of CPV-TEG hybrid system’, Energy Procedia, vol. 158, pp. 453–458, 2019, doi: 10.1016/j.egypro.2019.01.131.

[136] W. G. J. H. M. van Sark, ‘Feasibility of photovoltaic - Thermoelectric hybrid modules’, Appl Energy, vol. 88, no. 8, pp. 2785–2790, 2011, doi: 10.1016/j.apenergy.2011.02.008.

[137] Y. Y. Wu, S. Y. Wu, and L. Xiao, ‘Performance analysis of photovoltaic-thermoelectric hybrid system with and without glass cover’, Energy Convers Manag, vol. 93, pp. 151–159, 2015, doi: 10.1016/j.enconman.2015.01.013.

[138] C. Lertsatitthanakorn, N. Khasee, S. Atthajariyakul, S. Soponronnarit, A. Therdyothin, and R. O. Suzuki, ‘Performance analysis of a double-pass thermoelectric solar air collector’, Solar Energy Materials and Solar Cells, vol. 92, no. 9, pp. 1105–1109, 2008, doi: 10.1016/j.solmat.2008.03.018.

[139] J. Zhang, H. Zhai, Z. Wu, Y. Wang, H. Xie, and M. Zhang, ‘Enhanced performance of photovoltaic – thermoelectric coupling devices with thermal interface materials’, Energy Reports, vol. 6, pp. 116–122, 2020, doi: 10.1016/j.egyr.2019.12.001.

[140] A. Makki, S. Omer, Y. Su, and H. Sabir, ‘Numerical investigation of heat pipe-based photovoltaic-thermoelectric generator (HP-PV/TEG) hybrid system’, Energy Convers Manag, vol. 112, pp. 274–287, 2016, doi: 10.1016/j.enconman.2015.12.069.

[141] W. Gu, T. Ma, A. Song, M. Li, and L. Shen, ‘Mathematical modelling and performance evaluation of a hybrid photovoltaic-thermoelectric system’, Energy Convers Manag, vol. 198, no. June, p. 111800, 2019, doi: 10.1016/j.enconman.2019.111800.

[142] H. Fathabadi, ‘Novel solar-powered photovoltaic / thermoelectric hybrid power source’, Renew Energy, vol. 146, pp. 426–434, 2020, doi: 10.1016/j.renene.2019.06.141.

[143] P. Motiei, M. Yaghoubi, E. GoshtashbiRad, and A. Vadiee, ‘Two-dimensional unsteady state performance analysis of a hybrid photovoltaic-thermoelectric generator’, Renew Energy, vol. 119, pp. 551–565, 2018, doi: 10.1016/j.renene.2017.11.092.

[144] M. K. Mishu et al., ‘An Adaptive TE-PV Hybrid Energy Harvesting System for Self-Powered IoT Sensor Applications’, sensors Article - MDPI, vol. 21, no. 2604, 2021, doi: 10.3390/s21082604.

[145] S. S. Indira and C. A. Vaithilingam, ‘Performance Evaluation of a Hybrid Photovoltaic / Thermoelectric Generator System under Non-Tracking and Tracking Condition’, MATEC Web of Conferences 14th EURECA, vol. 02009, 2021.

[146] J. Ko, S.-Y. Cheon, and J.-W. Jeong, ‘Phase-Change Material Design for Thermoelectric Generator-Assisted Building Integrated Photovoltaic’, ASHRAE Trans, vol. 127, no. 2, pp. 1–8, 2021.

[147] A. Ruzaimi, S. Shafie, W. Z. W. Hassan, N. Azis, M. E. Ya, and E. Elianddy, ‘Performance analysis of thermoelectric generator implemented on non-uniform heat distribution of photovoltaic module’, Energy Reports, vol. 7, pp. 2379–2387, 2021, doi: 10.1016/j.egyr.2021.04.029.

[148] H. Metwally, N. A. Mahmoud, W. Aboelsoud, and M. Ezzat, ‘Yearly performance of the photovoltaic active cooling system using the thermoelectric generator’, Case Studies in Thermal Engineering, vol. 27, no. July, p. 101252, 2021, doi: 10.1016/j.csite.2021.101252.

[149] M. Nazer, M. F. H. Rostam, S. Y. Eh Noum, M. T. Hajibeigy, and K. Shameli, ‘Performance Analysis of Photovoltaic Passive Heat Storage System with Microencapsulated Paraffin Wax for Thermoelectric Generation’, Journal of Research in Nanoscience and Nanotechnology, vol. 1, no. 1, pp. 75–90, 2021, doi: 10.37934/jrnn.1.1.7590.

[150] M. Greppi and G. Fabbri, ‘Integrated PV-TEG Cooling System and Support’, vol. 10, no. 1, pp. 21–26, 2021, doi: 10.35629/6734-1001022126.

[151] D. Ji et al., ‘Geometry optimization of solar thermoelectric generator under different operating conditions via Taguchi method’, Energy Convers Manag, vol. 238, no. November 2020, 2021.

[152] Z. He, M. Yang, L. Wang, E. Bao, and H. Zhang, ‘Concentrated Photovoltaic Thermoelectric Hybrid System : An Experimental and Machine Learning Study’, Engineered Science, vol. 15, pp. 47–56, 2021.

[153] J. M. Chem, O. Zapata-arteaga, and A. R. Gon, ‘Comparing different geometries for photovoltaic- thermoelectric hybrid devices based on organics’, J Mater Chem C Mater, vol. 9, pp. 2123–2132, 2021, doi: 10.1039/d0tc05067a.

[154] A. Ben, H. Ali, A. Fadhel, and A. Guizani, ‘Performance investigation of a concentrating photovoltaic thermal hybrid solar system combined with thermoelectric generators’, Energy Convers Manag, vol. 205, no. December 2019, 2020, doi: 10.1016/j.enconman.2019.112377.

[155] M. Zeneli, A. Bellucci, G. Sabbatella, D. M. Trucchi, A. Nikolopoulos, and N. Nikolopoulos, ‘Performance evaluation and optimization of the cooling system of a hybrid thermionic-photovoltaic converter’, Energy Convers Manag, vol. 210, no. March, p. 112717, 2020, doi: 10.1016/j.enconman.2020.112717.

[156] L. J. Zheng, S. Lim, N. K. Kim, D. H. Kang, and Y. J. Youn, ‘Experimental Study of a Thin Water-Film Evaporative Cooling System to Enhance the Energy Conversion Efficiency of a Thermoelectric Device’, Energy, p. 119040, 2020, doi: 10.1016/j.energy.2020.119040.

[157] C. Pires, P. D. Silva, and P. D. Gaspar, ‘Experimental study of a hybrid solar photovoltaic , thermoelectric and thermal module’, E3S Web of Conferences, PEEE 2019, vol. 01005, pp. 0–5, 2020.

[158] S. Shittu, G. Li, X. Zhao, J. Zhou, and X. Ma, ‘Experimental study and exergy analysis of photovoltaic-thermoelectric with fl at plate micro-channel heat pipe’, Energy Convers Manag, vol. 207, no. January, p. 112515, 2020, doi: 10.1016/j.enconman.2020.112515.

[159] A. Salari, A. Parcheforosh, A. Hakkaki-fard, and A. Amadeh, ‘A numerical study on a photovoltaic thermal system integrated with a thermoelectric generator module’, Renew Energy, vol. 153, pp. 1261–1271, 2020, doi: 10.1016/j.renene.2020.02.018.

[160] N. M. Shatar, M. Azizi, A. Rahman, and M. N. Muhtazaruddin, ‘Performance Evaluation of Unconcentrated Photovoltaic-Thermoelectric Generator Hybrid System under Tropical Climate’, sustainability Article, MDPI, vol. 11, no. 6192, 2019, doi: 10.3390/su11226192.

[161] K. Birol, ‘Development of a composite PVT panel with PCM embodiment , TEG modules , fl at-plate solar collector , and thermally pulsing heat pipes’, Solar Energy, no. September 2018, pp. 0–1, 2019, doi: 10.1016/j.solener.2019.10.075.

[162] S. Diwania, S. Agrawal, A. S. Siddiqui, and S. Singh, ‘Photovoltaic – thermal ( PV / T ) technology : a comprehensive review on applications and its advancement’, International Journal of Energy and Environmental Engineering, vol. 11, no. 1, pp. 33–54, 2020, doi: 10.1007/s40095-019-00327-y.

[163] T. Cui, Y. Xuan, and Q. Li, ‘Design of a novel concentrating photovoltaic-thermoelectric system incorporated with phase change materials’, Energy Convers Manag, vol. 112, pp. 49–60, 2016, doi: 10.1016/j.enconman.2016.01.008.

[164] Y. Luo, L. Zhang, Z. Liu, Y. Wang, F. Meng, and J. Wu, ‘Thermal performance evaluation of an active building integrated photovoltaic thermoelectric wall system’, Appl Energy, vol. 177, pp. 25–39, 2016, doi: 10.1016/j.apenergy.2016.05.087.

[165] S. Sinha and S. S. Chandel, ‘Review of recent trends in optimization techniques for solar photovoltaic-wind based hybrid energy systems’, Renewable and Sustainable Energy Reviews, vol. 50, pp. 755–769, 2015, doi: 10.1016/j.rser.2015.05.040.

[166] B. Ghorbani, M. Mehrpooya, and M. M. M. Sharifzadeh, ‘Introducing a hybrid photovoltaic-thermal collector, ejector refrigeration cycle and phase change material storage energy system (Energy, exergy and economic analysis)’, International Journal of Refrigeration, vol. 103, pp. 61–76, 2019, doi: 10.1016/j.ijrefrig.2019.03.04

Copyright 2018 - 2023 Sanderman Publishing House